Step | Hyp | Ref
| Expression |
1 | | 2eu4 2287 |
. 2
⊢ ((∃!x∃yφ ∧ ∃!y∃xφ) ↔ (∃x∃yφ ∧ ∃z∃w∀x∀y(φ → (x = z ∧ y = w)))) |
2 | | nfv 1619 |
. . . . . 6
⊢ Ⅎzφ |
3 | | nfv 1619 |
. . . . . 6
⊢ Ⅎwφ |
4 | | nfs1v 2106 |
. . . . . 6
⊢ Ⅎx[z / x][w / y]φ |
5 | | nfs1v 2106 |
. . . . . . 7
⊢ Ⅎy[w / y]φ |
6 | 5 | nfsb 2109 |
. . . . . 6
⊢ Ⅎy[z / x][w / y]φ |
7 | | sbequ12 1919 |
. . . . . . 7
⊢ (y = w →
(φ ↔ [w / y]φ)) |
8 | | sbequ12 1919 |
. . . . . . 7
⊢ (x = z →
([w / y]φ ↔
[z / x][w / y]φ)) |
9 | 7, 8 | sylan9bbr 681 |
. . . . . 6
⊢ ((x = z ∧ y = w) → (φ
↔ [z / x][w / y]φ)) |
10 | 2, 3, 4, 6, 9 | cbvex2 2005 |
. . . . 5
⊢ (∃x∃yφ ↔ ∃z∃w[z / x][w / y]φ) |
11 | | equequ2 1686 |
. . . . . . . . . 10
⊢ (z = v →
(x = z
↔ x = v)) |
12 | | equequ2 1686 |
. . . . . . . . . 10
⊢ (w = u →
(y = w
↔ y = u)) |
13 | 11, 12 | bi2anan9 843 |
. . . . . . . . 9
⊢ ((z = v ∧ w = u) → ((x =
z ∧
y = w)
↔ (x = v ∧ y = u))) |
14 | 13 | imbi2d 307 |
. . . . . . . 8
⊢ ((z = v ∧ w = u) → ((φ → (x = z ∧ y = w)) ↔ (φ → (x = v ∧ y = u)))) |
15 | 14 | 2albidv 1627 |
. . . . . . 7
⊢ ((z = v ∧ w = u) → (∀x∀y(φ → (x = z ∧ y = w)) ↔ ∀x∀y(φ → (x = v ∧ y = u)))) |
16 | 15 | cbvex2v 2007 |
. . . . . 6
⊢ (∃z∃w∀x∀y(φ → (x = z ∧ y = w)) ↔ ∃v∃u∀x∀y(φ → (x = v ∧ y = u))) |
17 | | nfv 1619 |
. . . . . . . . 9
⊢ Ⅎz(φ →
(x = v
∧ y =
u)) |
18 | | nfv 1619 |
. . . . . . . . 9
⊢ Ⅎw(φ →
(x = v
∧ y =
u)) |
19 | | nfv 1619 |
. . . . . . . . . 10
⊢ Ⅎx(z = v ∧ w = u) |
20 | 4, 19 | nfim 1813 |
. . . . . . . . 9
⊢ Ⅎx([z / x][w / y]φ →
(z = v
∧ w =
u)) |
21 | | nfv 1619 |
. . . . . . . . . 10
⊢ Ⅎy(z = v ∧ w = u) |
22 | 6, 21 | nfim 1813 |
. . . . . . . . 9
⊢ Ⅎy([z / x][w / y]φ →
(z = v
∧ w =
u)) |
23 | | equequ1 1684 |
. . . . . . . . . . 11
⊢ (x = z →
(x = v
↔ z = v)) |
24 | | equequ1 1684 |
. . . . . . . . . . 11
⊢ (y = w →
(y = u
↔ w = u)) |
25 | 23, 24 | bi2anan9 843 |
. . . . . . . . . 10
⊢ ((x = z ∧ y = w) → ((x =
v ∧
y = u)
↔ (z = v ∧ w = u))) |
26 | 9, 25 | imbi12d 311 |
. . . . . . . . 9
⊢ ((x = z ∧ y = w) → ((φ → (x = v ∧ y = u)) ↔ ([z /
x][w /
y]φ
→ (z = v ∧ w = u)))) |
27 | 17, 18, 20, 22, 26 | cbval2 2004 |
. . . . . . . 8
⊢ (∀x∀y(φ → (x = v ∧ y = u)) ↔ ∀z∀w([z / x][w / y]φ → (z = v ∧ w = u))) |
28 | 27 | 2exbii 1583 |
. . . . . . 7
⊢ (∃v∃u∀x∀y(φ → (x = v ∧ y = u)) ↔ ∃v∃u∀z∀w([z / x][w / y]φ → (z = v ∧ w = u))) |
29 | | 2mo 2282 |
. . . . . . 7
⊢ (∃v∃u∀z∀w([z / x][w / y]φ → (z = v ∧ w = u)) ↔ ∀z∀w∀v∀u(([z / x][w / y]φ ∧
[v / z][u / w][z / x][w / y]φ) →
(z = v
∧ w =
u))) |
30 | 28, 29 | bitri 240 |
. . . . . 6
⊢ (∃v∃u∀x∀y(φ → (x = v ∧ y = u)) ↔ ∀z∀w∀v∀u(([z / x][w / y]φ ∧
[v / z][u / w][z / x][w / y]φ) →
(z = v
∧ w =
u))) |
31 | 16, 30 | bitri 240 |
. . . . 5
⊢ (∃z∃w∀x∀y(φ → (x = z ∧ y = w)) ↔ ∀z∀w∀v∀u(([z / x][w / y]φ ∧
[v / z][u / w][z / x][w / y]φ) →
(z = v
∧ w =
u))) |
32 | | 19.29r2 1598 |
. . . . 5
⊢ ((∃z∃w[z / x][w / y]φ ∧ ∀z∀w∀v∀u(([z / x][w / y]φ ∧
[v / z][u / w][z / x][w / y]φ) →
(z = v
∧ w =
u))) → ∃z∃w([z / x][w / y]φ ∧ ∀v∀u(([z / x][w / y]φ ∧
[v / z][u / w][z / x][w / y]φ) →
(z = v
∧ w =
u)))) |
33 | 10, 31, 32 | syl2anb 465 |
. . . 4
⊢ ((∃x∃yφ ∧ ∃z∃w∀x∀y(φ → (x = z ∧ y = w))) → ∃z∃w([z / x][w / y]φ ∧ ∀v∀u(([z / x][w / y]φ ∧
[v / z][u / w][z / x][w / y]φ) →
(z = v
∧ w =
u)))) |
34 | | 2albiim 1612 |
. . . . . . 7
⊢ (∀x∀y(φ ↔ (x = z ∧ y = w)) ↔ (∀x∀y(φ → (x = z ∧ y = w)) ∧ ∀x∀y((x = z ∧ y = w) → φ))) |
35 | | ancom 437 |
. . . . . . 7
⊢ ((∀x∀y(φ → (x = z ∧ y = w)) ∧ ∀x∀y((x = z ∧ y = w) → φ)) ↔ (∀x∀y((x = z ∧ y = w) → φ)
∧ ∀x∀y(φ → (x = z ∧ y = w)))) |
36 | 34, 35 | bitri 240 |
. . . . . 6
⊢ (∀x∀y(φ ↔ (x = z ∧ y = w)) ↔ (∀x∀y((x = z ∧ y = w) → φ)
∧ ∀x∀y(φ → (x = z ∧ y = w)))) |
37 | 36 | 2exbii 1583 |
. . . . 5
⊢ (∃z∃w∀x∀y(φ ↔ (x = z ∧ y = w)) ↔ ∃z∃w(∀x∀y((x = z ∧ y = w) → φ)
∧ ∀x∀y(φ → (x = z ∧ y = w)))) |
38 | | nfv 1619 |
. . . . . . . . . . . 12
⊢ Ⅎv(([z / x][w / y]φ ∧ φ) →
(z = x
∧ w =
y)) |
39 | | nfv 1619 |
. . . . . . . . . . . 12
⊢ Ⅎu(([z / x][w / y]φ ∧ φ) →
(z = x
∧ w =
y)) |
40 | 4 | nfsb 2109 |
. . . . . . . . . . . . . . 15
⊢ Ⅎx[u / w][z / x][w / y]φ |
41 | 40 | nfsb 2109 |
. . . . . . . . . . . . . 14
⊢ Ⅎx[v / z][u / w][z / x][w / y]φ |
42 | 4, 41 | nfan 1824 |
. . . . . . . . . . . . 13
⊢ Ⅎx([z / x][w / y]φ ∧ [v / z][u / w][z / x][w / y]φ) |
43 | 42, 19 | nfim 1813 |
. . . . . . . . . . . 12
⊢ Ⅎx(([z / x][w / y]φ ∧ [v / z][u / w][z / x][w / y]φ) →
(z = v
∧ w =
u)) |
44 | 6 | nfsb 2109 |
. . . . . . . . . . . . . . 15
⊢ Ⅎy[u / w][z / x][w / y]φ |
45 | 44 | nfsb 2109 |
. . . . . . . . . . . . . 14
⊢ Ⅎy[v / z][u / w][z / x][w / y]φ |
46 | 6, 45 | nfan 1824 |
. . . . . . . . . . . . 13
⊢ Ⅎy([z / x][w / y]φ ∧ [v / z][u / w][z / x][w / y]φ) |
47 | 46, 21 | nfim 1813 |
. . . . . . . . . . . 12
⊢ Ⅎy(([z / x][w / y]φ ∧ [v / z][u / w][z / x][w / y]φ) →
(z = v
∧ w =
u)) |
48 | | sbequ12 1919 |
. . . . . . . . . . . . . . . 16
⊢ (y = u →
(φ ↔ [u / y]φ)) |
49 | | sbequ12 1919 |
. . . . . . . . . . . . . . . 16
⊢ (x = v →
([u / y]φ ↔
[v / x][u / y]φ)) |
50 | 48, 49 | sylan9bbr 681 |
. . . . . . . . . . . . . . 15
⊢ ((x = v ∧ y = u) → (φ
↔ [v / x][u / y]φ)) |
51 | 3 | sbco2 2086 |
. . . . . . . . . . . . . . . . 17
⊢ ([u / w][w / y]φ ↔ [u / y]φ) |
52 | 51 | sbbii 1653 |
. . . . . . . . . . . . . . . 16
⊢ ([v / x][u / w][w / y]φ ↔ [v / x][u / y]φ) |
53 | | nfv 1619 |
. . . . . . . . . . . . . . . . . 18
⊢ Ⅎz[u / w][w / y]φ |
54 | 53 | sbco2 2086 |
. . . . . . . . . . . . . . . . 17
⊢ ([v / z][z / x][u / w][w / y]φ ↔ [v / x][u / w][w / y]φ) |
55 | | sbcom2 2114 |
. . . . . . . . . . . . . . . . . 18
⊢ ([z / x][u / w][w / y]φ ↔ [u / w][z / x][w / y]φ) |
56 | 55 | sbbii 1653 |
. . . . . . . . . . . . . . . . 17
⊢ ([v / z][z / x][u / w][w / y]φ ↔ [v / z][u / w][z / x][w / y]φ) |
57 | 54, 56 | bitr3i 242 |
. . . . . . . . . . . . . . . 16
⊢ ([v / x][u / w][w / y]φ ↔ [v / z][u / w][z / x][w / y]φ) |
58 | 52, 57 | bitr3i 242 |
. . . . . . . . . . . . . . 15
⊢ ([v / x][u / y]φ ↔ [v / z][u / w][z / x][w / y]φ) |
59 | 50, 58 | syl6bb 252 |
. . . . . . . . . . . . . 14
⊢ ((x = v ∧ y = u) → (φ
↔ [v / z][u / w][z / x][w / y]φ)) |
60 | 59 | anbi2d 684 |
. . . . . . . . . . . . 13
⊢ ((x = v ∧ y = u) → (([z /
x][w /
y]φ
∧ φ)
↔ ([z / x][w / y]φ ∧ [v / z][u / w][z / x][w / y]φ))) |
61 | | equequ2 1686 |
. . . . . . . . . . . . . 14
⊢ (x = v →
(z = x
↔ z = v)) |
62 | | equequ2 1686 |
. . . . . . . . . . . . . 14
⊢ (y = u →
(w = y
↔ w = u)) |
63 | 61, 62 | bi2anan9 843 |
. . . . . . . . . . . . 13
⊢ ((x = v ∧ y = u) → ((z =
x ∧
w = y)
↔ (z = v ∧ w = u))) |
64 | 60, 63 | imbi12d 311 |
. . . . . . . . . . . 12
⊢ ((x = v ∧ y = u) → ((([z
/ x][w
/ y]φ ∧ φ) → (z = x ∧ w = y)) ↔ (([z
/ x][w
/ y]φ ∧
[v / z][u / w][z / x][w / y]φ) →
(z = v
∧ w =
u)))) |
65 | 38, 39, 43, 47, 64 | cbval2 2004 |
. . . . . . . . . . 11
⊢ (∀x∀y(([z / x][w / y]φ ∧ φ) → (z = x ∧ w = y)) ↔ ∀v∀u(([z / x][w / y]φ ∧
[v / z][u / w][z / x][w / y]φ) →
(z = v
∧ w =
u))) |
66 | | equcom 1680 |
. . . . . . . . . . . . . . 15
⊢ (z = x ↔
x = z) |
67 | | equcom 1680 |
. . . . . . . . . . . . . . 15
⊢ (w = y ↔
y = w) |
68 | 66, 67 | anbi12i 678 |
. . . . . . . . . . . . . 14
⊢ ((z = x ∧ w = y) ↔ (x =
z ∧
y = w)) |
69 | 68 | imbi2i 303 |
. . . . . . . . . . . . 13
⊢ ((([z / x][w / y]φ ∧ φ) → (z = x ∧ w = y)) ↔ (([z
/ x][w
/ y]φ ∧ φ) → (x = z ∧ y = w))) |
70 | | impexp 433 |
. . . . . . . . . . . . 13
⊢ ((([z / x][w / y]φ ∧ φ) → (x = z ∧ y = w)) ↔ ([z /
x][w /
y]φ
→ (φ → (x = z ∧ y = w)))) |
71 | 69, 70 | bitri 240 |
. . . . . . . . . . . 12
⊢ ((([z / x][w / y]φ ∧ φ) → (z = x ∧ w = y)) ↔ ([z /
x][w /
y]φ
→ (φ → (x = z ∧ y = w)))) |
72 | 71 | 2albii 1567 |
. . . . . . . . . . 11
⊢ (∀x∀y(([z / x][w / y]φ ∧ φ) → (z = x ∧ w = y)) ↔ ∀x∀y([z / x][w / y]φ → (φ → (x = z ∧ y = w)))) |
73 | 65, 72 | bitr3i 242 |
. . . . . . . . . 10
⊢ (∀v∀u(([z / x][w / y]φ ∧
[v / z][u / w][z / x][w / y]φ) →
(z = v
∧ w =
u)) ↔ ∀x∀y([z / x][w / y]φ → (φ → (x = z ∧ y = w)))) |
74 | 4, 6 | 19.21-2 1864 |
. . . . . . . . . 10
⊢ (∀x∀y([z / x][w / y]φ → (φ → (x = z ∧ y = w))) ↔ ([z
/ x][w
/ y]φ → ∀x∀y(φ → (x = z ∧ y = w)))) |
75 | 73, 74 | bitri 240 |
. . . . . . . . 9
⊢ (∀v∀u(([z / x][w / y]φ ∧
[v / z][u / w][z / x][w / y]φ) →
(z = v
∧ w =
u)) ↔ ([z / x][w / y]φ → ∀x∀y(φ → (x = z ∧ y = w)))) |
76 | 75 | anbi2i 675 |
. . . . . . . 8
⊢ (([z / x][w / y]φ ∧ ∀v∀u(([z / x][w / y]φ ∧
[v / z][u / w][z / x][w / y]φ) →
(z = v
∧ w =
u))) ↔ ([z / x][w / y]φ ∧
([z / x][w / y]φ →
∀x∀y(φ → (x = z ∧ y = w))))) |
77 | | abai 770 |
. . . . . . . 8
⊢ (([z / x][w / y]φ ∧ ∀x∀y(φ → (x = z ∧ y = w))) ↔ ([z
/ x][w
/ y]φ ∧
([z / x][w / y]φ →
∀x∀y(φ → (x = z ∧ y = w))))) |
78 | 76, 77 | bitr4i 243 |
. . . . . . 7
⊢ (([z / x][w / y]φ ∧ ∀v∀u(([z / x][w / y]φ ∧
[v / z][u / w][z / x][w / y]φ) →
(z = v
∧ w =
u))) ↔ ([z / x][w / y]φ ∧ ∀x∀y(φ → (x = z ∧ y = w)))) |
79 | | 2sb6 2113 |
. . . . . . . 8
⊢ ([z / x][w / y]φ ↔ ∀x∀y((x = z ∧ y = w) → φ)) |
80 | 79 | anbi1i 676 |
. . . . . . 7
⊢ (([z / x][w / y]φ ∧ ∀x∀y(φ → (x = z ∧ y = w))) ↔ (∀x∀y((x = z ∧ y = w) → φ)
∧ ∀x∀y(φ → (x = z ∧ y = w)))) |
81 | 78, 80 | bitri 240 |
. . . . . 6
⊢ (([z / x][w / y]φ ∧ ∀v∀u(([z / x][w / y]φ ∧
[v / z][u / w][z / x][w / y]φ) →
(z = v
∧ w =
u))) ↔ (∀x∀y((x = z ∧ y = w) → φ)
∧ ∀x∀y(φ → (x = z ∧ y = w)))) |
82 | 81 | 2exbii 1583 |
. . . . 5
⊢ (∃z∃w([z / x][w / y]φ ∧ ∀v∀u(([z / x][w / y]φ ∧
[v / z][u / w][z / x][w / y]φ) →
(z = v
∧ w =
u))) ↔ ∃z∃w(∀x∀y((x = z ∧ y = w) → φ)
∧ ∀x∀y(φ → (x = z ∧ y = w)))) |
83 | 37, 82 | bitr4i 243 |
. . . 4
⊢ (∃z∃w∀x∀y(φ ↔ (x = z ∧ y = w)) ↔ ∃z∃w([z / x][w / y]φ ∧ ∀v∀u(([z / x][w / y]φ ∧
[v / z][u / w][z / x][w / y]φ) →
(z = v
∧ w =
u)))) |
84 | 33, 83 | sylibr 203 |
. . 3
⊢ ((∃x∃yφ ∧ ∃z∃w∀x∀y(φ → (x = z ∧ y = w))) → ∃z∃w∀x∀y(φ ↔ (x = z ∧ y = w))) |
85 | | bi2 189 |
. . . . . . 7
⊢ ((φ ↔ (x = z ∧ y = w)) → ((x =
z ∧
y = w)
→ φ)) |
86 | 85 | 2alimi 1560 |
. . . . . 6
⊢ (∀x∀y(φ ↔ (x = z ∧ y = w)) → ∀x∀y((x = z ∧ y = w) → φ)) |
87 | 86 | 2eximi 1577 |
. . . . 5
⊢ (∃z∃w∀x∀y(φ ↔ (x = z ∧ y = w)) → ∃z∃w∀x∀y((x = z ∧ y = w) → φ)) |
88 | | 2exsb 2132 |
. . . . 5
⊢ (∃x∃yφ ↔ ∃z∃w∀x∀y((x = z ∧ y = w) → φ)) |
89 | 87, 88 | sylibr 203 |
. . . 4
⊢ (∃z∃w∀x∀y(φ ↔ (x = z ∧ y = w)) → ∃x∃yφ) |
90 | | bi1 178 |
. . . . . 6
⊢ ((φ ↔ (x = z ∧ y = w)) → (φ → (x = z ∧ y = w))) |
91 | 90 | 2alimi 1560 |
. . . . 5
⊢ (∀x∀y(φ ↔ (x = z ∧ y = w)) → ∀x∀y(φ → (x = z ∧ y = w))) |
92 | 91 | 2eximi 1577 |
. . . 4
⊢ (∃z∃w∀x∀y(φ ↔ (x = z ∧ y = w)) → ∃z∃w∀x∀y(φ → (x = z ∧ y = w))) |
93 | 89, 92 | jca 518 |
. . 3
⊢ (∃z∃w∀x∀y(φ ↔ (x = z ∧ y = w)) → (∃x∃yφ ∧ ∃z∃w∀x∀y(φ → (x = z ∧ y = w)))) |
94 | 84, 93 | impbii 180 |
. 2
⊢ ((∃x∃yφ ∧ ∃z∃w∀x∀y(φ → (x = z ∧ y = w))) ↔ ∃z∃w∀x∀y(φ ↔ (x = z ∧ y = w))) |
95 | 1, 94 | bitri 240 |
1
⊢ ((∃!x∃yφ ∧ ∃!y∃xφ) ↔ ∃z∃w∀x∀y(φ ↔ (x = z ∧ y = w))) |