| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 19.29x | GIF version | ||
| Description: Variation of Theorem 19.29 of [Margaris] p. 90 with mixed quantification. (Contributed by NM, 11-Feb-2005.) |
| Ref | Expression |
|---|---|
| 19.29x | ⊢ ((∃x∀yφ ∧ ∀x∃yψ) → ∃x∃y(φ ∧ ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.29r 1597 | . 2 ⊢ ((∃x∀yφ ∧ ∀x∃yψ) → ∃x(∀yφ ∧ ∃yψ)) | |
| 2 | 19.29 1596 | . . 3 ⊢ ((∀yφ ∧ ∃yψ) → ∃y(φ ∧ ψ)) | |
| 3 | 2 | eximi 1576 | . 2 ⊢ (∃x(∀yφ ∧ ∃yψ) → ∃x∃y(φ ∧ ψ)) |
| 4 | 1, 3 | syl 15 | 1 ⊢ ((∃x∀yφ ∧ ∀x∃yψ) → ∃x∃y(φ ∧ ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |