| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 19.31 | GIF version | ||
| Description: Theorem 19.31 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.31.1 | ⊢ Ⅎxψ |
| Ref | Expression |
|---|---|
| 19.31 | ⊢ (∀x(φ ∨ ψ) ↔ (∀xφ ∨ ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.31.1 | . . 3 ⊢ Ⅎxψ | |
| 2 | 1 | 19.32 1875 | . 2 ⊢ (∀x(ψ ∨ φ) ↔ (ψ ∨ ∀xφ)) |
| 3 | orcom 376 | . . 3 ⊢ ((φ ∨ ψ) ↔ (ψ ∨ φ)) | |
| 4 | 3 | albii 1566 | . 2 ⊢ (∀x(φ ∨ ψ) ↔ ∀x(ψ ∨ φ)) |
| 5 | orcom 376 | . 2 ⊢ ((∀xφ ∨ ψ) ↔ (ψ ∨ ∀xφ)) | |
| 6 | 2, 4, 5 | 3bitr4i 268 | 1 ⊢ (∀x(φ ∨ ψ) ↔ (∀xφ ∨ ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∨ wo 357 ∀wal 1540 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-tru 1319 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: 2eu3 2286 |
| Copyright terms: Public domain | W3C validator |