New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.32 | GIF version |
Description: Theorem 19.32 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
19.32.1 | ⊢ Ⅎxφ |
Ref | Expression |
---|---|
19.32 | ⊢ (∀x(φ ∨ ψ) ↔ (φ ∨ ∀xψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.32.1 | . . . 4 ⊢ Ⅎxφ | |
2 | 1 | nfn 1793 | . . 3 ⊢ Ⅎx ¬ φ |
3 | 2 | 19.21 1796 | . 2 ⊢ (∀x(¬ φ → ψ) ↔ (¬ φ → ∀xψ)) |
4 | df-or 359 | . . 3 ⊢ ((φ ∨ ψ) ↔ (¬ φ → ψ)) | |
5 | 4 | albii 1566 | . 2 ⊢ (∀x(φ ∨ ψ) ↔ ∀x(¬ φ → ψ)) |
6 | df-or 359 | . 2 ⊢ ((φ ∨ ∀xψ) ↔ (¬ φ → ∀xψ)) | |
7 | 3, 5, 6 | 3bitr4i 268 | 1 ⊢ (∀x(φ ∨ ψ) ↔ (φ ∨ ∀xψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-or 359 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: 19.31 1876 2eu3 2286 axi12 2333 |
Copyright terms: Public domain | W3C validator |