New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.8wOLD | GIF version |
Description: Obsolete version of 19.8w 1660 as of 4-Dec-2017. (Contributed by NM, 1-Aug-2017.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
19.8wOLD.1 | ⊢ (φ → ∀xφ) |
Ref | Expression |
---|---|
19.8wOLD | ⊢ (φ → ∃xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8wOLD.1 | . . . . 5 ⊢ (φ → ∀xφ) | |
2 | notnot 282 | . . . . 5 ⊢ (φ ↔ ¬ ¬ φ) | |
3 | 2 | albii 1566 | . . . . 5 ⊢ (∀xφ ↔ ∀x ¬ ¬ φ) |
4 | 1, 2, 3 | 3imtr3i 256 | . . . 4 ⊢ (¬ ¬ φ → ∀x ¬ ¬ φ) |
5 | 4 | spnfw 1670 | . . 3 ⊢ (∀x ¬ φ → ¬ φ) |
6 | 5 | con2i 112 | . 2 ⊢ (φ → ¬ ∀x ¬ φ) |
7 | df-ex 1542 | . 2 ⊢ (∃xφ ↔ ¬ ∀x ¬ φ) | |
8 | 6, 7 | sylibr 203 | 1 ⊢ (φ → ∃xφ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-9 1654 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |