NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3imtr3i GIF version

Theorem 3imtr3i 256
Description: A mixed syllogism inference, useful for removing a definition from both sides of an implication. (Contributed by NM, 10-Aug-1994.)
Hypotheses
Ref Expression
3imtr3.1 (φψ)
3imtr3.2 (φχ)
3imtr3.3 (ψθ)
Assertion
Ref Expression
3imtr3i (χθ)

Proof of Theorem 3imtr3i
StepHypRef Expression
1 3imtr3.2 . . 3 (φχ)
2 3imtr3.1 . . 3 (φψ)
31, 2sylbir 204 . 2 (χψ)
4 3imtr3.3 . 2 (ψθ)
53, 4sylib 188 1 (χθ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  rb-ax1  1517  speimfw  1645  19.8wOLD  1693  ax10lem2  1937  sbal  2127  hblem  2458  fvfullfunlem2  5863  idssen  6041
  Copyright terms: Public domain W3C validator