New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iun0 | GIF version |
Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iun0 | ⊢ ∪x ∈ A ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3555 | . . . . . 6 ⊢ ¬ y ∈ ∅ | |
2 | 1 | a1i 10 | . . . . 5 ⊢ (x ∈ A → ¬ y ∈ ∅) |
3 | 2 | nrex 2717 | . . . 4 ⊢ ¬ ∃x ∈ A y ∈ ∅ |
4 | eliun 3974 | . . . 4 ⊢ (y ∈ ∪x ∈ A ∅ ↔ ∃x ∈ A y ∈ ∅) | |
5 | 3, 4 | mtbir 290 | . . 3 ⊢ ¬ y ∈ ∪x ∈ A ∅ |
6 | 5, 1 | 2false 339 | . 2 ⊢ (y ∈ ∪x ∈ A ∅ ↔ y ∈ ∅) |
7 | 6 | eqriv 2350 | 1 ⊢ ∪x ∈ A ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 ∅c0 3551 ∪ciun 3970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 df-iun 3972 |
This theorem is referenced by: iununi 4051 |
Copyright terms: Public domain | W3C validator |