NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  2nalexn GIF version

Theorem 2nalexn 1573
Description: Part of theorem *11.5 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
2nalexn xyφxy ¬ φ)

Proof of Theorem 2nalexn
StepHypRef Expression
1 df-ex 1542 . . 3 (xy ¬ φ ↔ ¬ x ¬ y ¬ φ)
2 alex 1572 . . . 4 (yφ ↔ ¬ y ¬ φ)
32albii 1566 . . 3 (xyφx ¬ y ¬ φ)
41, 3xchbinxr 302 . 2 (xy ¬ φ ↔ ¬ xyφ)
54bicomi 193 1 xyφxy ¬ φ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-ex 1542
This theorem is referenced by:  spc2gv  2943
  Copyright terms: Public domain W3C validator