| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > 2nalexn | GIF version | ||
| Description: Part of theorem *11.5 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.) | 
| Ref | Expression | 
|---|---|
| 2nalexn | ⊢ (¬ ∀x∀yφ ↔ ∃x∃y ¬ φ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ex 1542 | . . 3 ⊢ (∃x∃y ¬ φ ↔ ¬ ∀x ¬ ∃y ¬ φ) | |
| 2 | alex 1572 | . . . 4 ⊢ (∀yφ ↔ ¬ ∃y ¬ φ) | |
| 3 | 2 | albii 1566 | . . 3 ⊢ (∀x∀yφ ↔ ∀x ¬ ∃y ¬ φ) | 
| 4 | 1, 3 | xchbinxr 302 | . 2 ⊢ (∃x∃y ¬ φ ↔ ¬ ∀x∀yφ) | 
| 5 | 4 | bicomi 193 | 1 ⊢ (¬ ∀x∀yφ ↔ ∃x∃y ¬ φ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 176 ∀wal 1540 ∃wex 1541 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 | 
| This theorem depends on definitions: df-bi 177 df-ex 1542 | 
| This theorem is referenced by: spc2gv 2943 | 
| Copyright terms: Public domain | W3C validator |