New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2nalexn | GIF version |
Description: Part of theorem *11.5 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.) |
Ref | Expression |
---|---|
2nalexn | ⊢ (¬ ∀x∀yφ ↔ ∃x∃y ¬ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1542 | . . 3 ⊢ (∃x∃y ¬ φ ↔ ¬ ∀x ¬ ∃y ¬ φ) | |
2 | alex 1572 | . . . 4 ⊢ (∀yφ ↔ ¬ ∃y ¬ φ) | |
3 | 2 | albii 1566 | . . 3 ⊢ (∀x∀yφ ↔ ∀x ¬ ∃y ¬ φ) |
4 | 1, 3 | xchbinxr 302 | . 2 ⊢ (∃x∃y ¬ φ ↔ ¬ ∀x∀yφ) |
5 | 4 | bicomi 193 | 1 ⊢ (¬ ∀x∀yφ ↔ ∃x∃y ¬ φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: spc2gv 2943 |
Copyright terms: Public domain | W3C validator |