New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > xchbinxr | GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchbinxr.1 | ⊢ (φ ↔ ¬ ψ) |
xchbinxr.2 | ⊢ (χ ↔ ψ) |
Ref | Expression |
---|---|
xchbinxr | ⊢ (φ ↔ ¬ χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchbinxr.1 | . 2 ⊢ (φ ↔ ¬ ψ) | |
2 | xchbinxr.2 | . . 3 ⊢ (χ ↔ ψ) | |
3 | 2 | bicomi 193 | . 2 ⊢ (ψ ↔ χ) |
4 | 1, 3 | xchbinx 301 | 1 ⊢ (φ ↔ ¬ χ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 3anor 948 nanbi 1294 2nalexn 1573 ralnex 2625 rexnal 2626 nss 3330 difdif 3393 difab 3524 ssdif0 3610 difin0ss 3617 disjsn 3787 iundif2 4034 iindif2 4036 tfinsuc 4499 |
Copyright terms: Public domain | W3C validator |