NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  xchbinxr GIF version

Theorem xchbinxr 302
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
Hypotheses
Ref Expression
xchbinxr.1 (φ ↔ ¬ ψ)
xchbinxr.2 (χψ)
Assertion
Ref Expression
xchbinxr (φ ↔ ¬ χ)

Proof of Theorem xchbinxr
StepHypRef Expression
1 xchbinxr.1 . 2 (φ ↔ ¬ ψ)
2 xchbinxr.2 . . 3 (χψ)
32bicomi 193 . 2 (ψχ)
41, 3xchbinx 301 1 (φ ↔ ¬ χ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  3anor  948  nanbi  1294  2nalexn  1573  ralnex  2625  rexnal  2626  nss  3330  difdif  3393  difab  3524  ssdif0  3610  difin0ss  3617  disjsn  3787  iundif2  4034  iindif2  4036  tfinsuc  4499
  Copyright terms: Public domain W3C validator