New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > alex | GIF version |
Description: Theorem 19.6 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
alex | ⊢ (∀xφ ↔ ¬ ∃x ¬ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 282 | . . 3 ⊢ (φ ↔ ¬ ¬ φ) | |
2 | 1 | albii 1566 | . 2 ⊢ (∀xφ ↔ ∀x ¬ ¬ φ) |
3 | alnex 1543 | . 2 ⊢ (∀x ¬ ¬ φ ↔ ¬ ∃x ¬ φ) | |
4 | 2, 3 | bitri 240 | 1 ⊢ (∀xφ ↔ ¬ ∃x ¬ φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: 2nalexn 1573 exnal 1574 19.3v 1665 hba1 1786 exists2 2294 nnsucelrlem1 4425 ltfinex 4465 eqpwrelk 4479 ncfinlowerlem1 4483 eqtfinrelk 4487 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 srelk 4525 sfintfinlem1 4532 tfinnnlem1 4534 dfop2lem1 4574 funsex 5829 qsexg 5983 |
Copyright terms: Public domain | W3C validator |