NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3com12 GIF version

Theorem 3com12 1155
Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Hypothesis
Ref Expression
3exp.1 ((φ ψ χ) → θ)
Assertion
Ref Expression
3com12 ((ψ φ χ) → θ)

Proof of Theorem 3com12
StepHypRef Expression
1 3ancoma 941 . 2 ((ψ φ χ) ↔ (φ ψ χ))
2 3exp.1 . 2 ((φ ψ χ) → θ)
31, 2sylbi 187 1 ((ψ φ χ) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  3adant2l  1176  3adant2r  1177  fvun2  5381
  Copyright terms: Public domain W3C validator