New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3com12 | GIF version |
Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((φ ∧ ψ ∧ χ) → θ) |
Ref | Expression |
---|---|
3com12 | ⊢ ((ψ ∧ φ ∧ χ) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancoma 941 | . 2 ⊢ ((ψ ∧ φ ∧ χ) ↔ (φ ∧ ψ ∧ χ)) | |
2 | 3exp.1 | . 2 ⊢ ((φ ∧ ψ ∧ χ) → θ) | |
3 | 1, 2 | sylbi 187 | 1 ⊢ ((ψ ∧ φ ∧ χ) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: 3adant2l 1176 3adant2r 1177 fvun2 5381 |
Copyright terms: Public domain | W3C validator |