NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3expib GIF version

Theorem 3expib 1154
Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.)
Hypothesis
Ref Expression
3exp.1 ((φ ψ χ) → θ)
Assertion
Ref Expression
3expib (φ → ((ψ χ) → θ))

Proof of Theorem 3expib
StepHypRef Expression
1 3exp.1 . . 3 ((φ ψ χ) → θ)
213exp 1150 . 2 (φ → (ψ → (χθ)))
32imp3a 420 1 (φ → ((ψ χ) → θ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  3anidm12  1239  mob  3019  fco  5232  f1oiso2  5501  fntxp  5805  fnpprod  5844  clos1is  5882  connexrd  5931  3ecoptocl  5999  enpw1  6063  enprmaplem3  6079  nchoicelem6  6295
  Copyright terms: Public domain W3C validator