| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3expib | GIF version | ||
| Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((φ ∧ ψ ∧ χ) → θ) |
| Ref | Expression |
|---|---|
| 3expib | ⊢ (φ → ((ψ ∧ χ) → θ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((φ ∧ ψ ∧ χ) → θ) | |
| 2 | 1 | 3exp 1150 | . 2 ⊢ (φ → (ψ → (χ → θ))) |
| 3 | 2 | imp3a 420 | 1 ⊢ (φ → ((ψ ∧ χ) → θ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: 3anidm12 1239 mob 3019 fco 5232 f1oiso2 5501 fntxp 5805 fnpprod 5844 clos1is 5882 connexrd 5931 3ecoptocl 5999 enpw1 6063 enprmaplem3 6079 nchoicelem6 6295 |
| Copyright terms: Public domain | W3C validator |