New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3eltr4g | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr4g.1 | ⊢ (φ → A ∈ B) |
3eltr4g.2 | ⊢ C = A |
3eltr4g.3 | ⊢ D = B |
Ref | Expression |
---|---|
3eltr4g | ⊢ (φ → C ∈ D) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr4g.1 | . 2 ⊢ (φ → A ∈ B) | |
2 | 3eltr4g.2 | . . 3 ⊢ C = A | |
3 | 3eltr4g.3 | . . 3 ⊢ D = B | |
4 | 2, 3 | eleq12i 2418 | . 2 ⊢ (C ∈ D ↔ A ∈ B) |
5 | 1, 4 | sylibr 203 | 1 ⊢ (φ → C ∈ D) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |