New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl5eqel | GIF version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl5eqel.1 | ⊢ A = B |
syl5eqel.2 | ⊢ (φ → B ∈ C) |
Ref | Expression |
---|---|
syl5eqel | ⊢ (φ → A ∈ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eqel.1 | . . 3 ⊢ A = B | |
2 | 1 | a1i 10 | . 2 ⊢ (φ → A = B) |
3 | syl5eqel.2 | . 2 ⊢ (φ → B ∈ C) | |
4 | 2, 3 | eqeltrd 2427 | 1 ⊢ (φ → A ∈ C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: syl5eqelr 2438 csbexg 3147 complexg 4100 inexg 4101 unexg 4102 difexg 4103 symdifexg 4104 uni1exg 4293 imakexg 4300 pw1exg 4303 cokexg 4310 imagekexg 4312 uniexg 4317 intexg 4320 pwexg 4329 addcexg 4394 nncaddccl 4420 ltfintr 4460 ncfinprop 4475 tfinprop 4490 nnadjoinpw 4522 sfindbl 4531 phiexg 4572 opexg 4588 proj1exg 4592 proj2exg 4593 imaexg 4747 coexg 4750 siexg 4753 cnvexg 5102 rnexg 5105 dmexg 5106 xpexg 5115 resexg 5117 fovrn 5605 fnovrn 5608 txpexg 5785 fixexg 5789 ins2exg 5796 ins3exg 5797 imageexg 5801 pprodexg 5838 fullfunexg 5860 ecexg 5950 qsexg 5983 pmex 6006 pmvalg 6011 nenpw1pwlem1 6085 tccl 6161 frecexg 6313 |
Copyright terms: Public domain | W3C validator |