NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eleq12i GIF version

Theorem eleq12i 2418
Description: Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.)
Hypotheses
Ref Expression
eleq1i.1 A = B
eleq12i.2 C = D
Assertion
Ref Expression
eleq12i (A CB D)

Proof of Theorem eleq12i
StepHypRef Expression
1 eleq12i.2 . . 3 C = D
21eleq2i 2417 . 2 (A CA D)
3 eleq1i.1 . . 3 A = B
43eleq1i 2416 . 2 (A DB D)
52, 4bitri 240 1 (A CB D)
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642   wcel 1710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346  df-clel 2349
This theorem is referenced by:  3eltr3g  2435  3eltr4g  2436  sbcel12g  3152
  Copyright terms: Public domain W3C validator