New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eleq12i | GIF version |
Description: Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
Ref | Expression |
---|---|
eleq1i.1 | ⊢ A = B |
eleq12i.2 | ⊢ C = D |
Ref | Expression |
---|---|
eleq12i | ⊢ (A ∈ C ↔ B ∈ D) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq12i.2 | . . 3 ⊢ C = D | |
2 | 1 | eleq2i 2417 | . 2 ⊢ (A ∈ C ↔ A ∈ D) |
3 | eleq1i.1 | . . 3 ⊢ A = B | |
4 | 3 | eleq1i 2416 | . 2 ⊢ (A ∈ D ↔ B ∈ D) |
5 | 2, 4 | bitri 240 | 1 ⊢ (A ∈ C ↔ B ∈ D) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: 3eltr3g 2435 3eltr4g 2436 sbcel12g 3152 |
Copyright terms: Public domain | W3C validator |