| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3exbii | GIF version | ||
| Description: Inference adding 3 existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.) |
| Ref | Expression |
|---|---|
| 3exbii.1 | ⊢ (φ ↔ ψ) |
| Ref | Expression |
|---|---|
| 3exbii | ⊢ (∃x∃y∃zφ ↔ ∃x∃y∃zψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exbii.1 | . . 3 ⊢ (φ ↔ ψ) | |
| 2 | 1 | exbii 1582 | . 2 ⊢ (∃zφ ↔ ∃zψ) |
| 3 | 2 | 2exbii 1583 | 1 ⊢ (∃x∃y∃zφ ↔ ∃x∃y∃zψ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∃wex 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 |
| This theorem is referenced by: eeeanv 1914 ceqsex6v 2900 oprabid 5551 dfoprab2 5559 |
| Copyright terms: Public domain | W3C validator |