NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3exbii GIF version

Theorem 3exbii 1584
Description: Inference adding 3 existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.)
Hypothesis
Ref Expression
3exbii.1 (φψ)
Assertion
Ref Expression
3exbii (xyzφxyzψ)

Proof of Theorem 3exbii
StepHypRef Expression
1 3exbii.1 . . 3 (φψ)
21exbii 1582 . 2 (zφzψ)
322exbii 1583 1 (xyzφxyzψ)
Colors of variables: wff setvar class
Syntax hints:  wb 176  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-ex 1542
This theorem is referenced by:  eeeanv  1914  ceqsex6v  2900  oprabid  5551  dfoprab2  5559
  Copyright terms: Public domain W3C validator