New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eeeanv | GIF version |
Description: Rearrange existential quantifiers. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
eeeanv | ⊢ (∃x∃y∃z(φ ∧ ψ ∧ χ) ↔ (∃xφ ∧ ∃yψ ∧ ∃zχ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 936 | . . 3 ⊢ ((φ ∧ ψ ∧ χ) ↔ ((φ ∧ ψ) ∧ χ)) | |
2 | 1 | 3exbii 1584 | . 2 ⊢ (∃x∃y∃z(φ ∧ ψ ∧ χ) ↔ ∃x∃y∃z((φ ∧ ψ) ∧ χ)) |
3 | eeanv 1913 | . . 3 ⊢ (∃y∃z((φ ∧ ψ) ∧ χ) ↔ (∃y(φ ∧ ψ) ∧ ∃zχ)) | |
4 | 3 | exbii 1582 | . 2 ⊢ (∃x∃y∃z((φ ∧ ψ) ∧ χ) ↔ ∃x(∃y(φ ∧ ψ) ∧ ∃zχ)) |
5 | eeanv 1913 | . . . 4 ⊢ (∃x∃y(φ ∧ ψ) ↔ (∃xφ ∧ ∃yψ)) | |
6 | 5 | anbi1i 676 | . . 3 ⊢ ((∃x∃y(φ ∧ ψ) ∧ ∃zχ) ↔ ((∃xφ ∧ ∃yψ) ∧ ∃zχ)) |
7 | 19.41v 1901 | . . 3 ⊢ (∃x(∃y(φ ∧ ψ) ∧ ∃zχ) ↔ (∃x∃y(φ ∧ ψ) ∧ ∃zχ)) | |
8 | df-3an 936 | . . 3 ⊢ ((∃xφ ∧ ∃yψ ∧ ∃zχ) ↔ ((∃xφ ∧ ∃yψ) ∧ ∃zχ)) | |
9 | 6, 7, 8 | 3bitr4i 268 | . 2 ⊢ (∃x(∃y(φ ∧ ψ) ∧ ∃zχ) ↔ (∃xφ ∧ ∃yψ ∧ ∃zχ)) |
10 | 2, 4, 9 | 3bitri 262 | 1 ⊢ (∃x∃y∃z(φ ∧ ψ ∧ χ) ↔ (∃xφ ∧ ∃yψ ∧ ∃zχ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∧ w3a 934 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 df-ex 1542 df-nf 1545 |
This theorem is referenced by: vtocl3 2912 spc3egv 2944 eloprabga 5579 mucass 6136 taddc 6230 letc 6232 |
Copyright terms: Public domain | W3C validator |