Proof of Theorem ceqsex6v
| Step | Hyp | Ref
| Expression |
| 1 | | 3anass 938 |
. . . . 5
⊢ (((x = A ∧ y = B ∧ z = C) ∧ (w = D ∧ v = E ∧ u = F) ∧ φ) ↔ ((x = A ∧ y = B ∧ z = C) ∧ ((w = D ∧ v = E ∧ u = F) ∧ φ))) |
| 2 | 1 | 3exbii 1584 |
. . . 4
⊢ (∃w∃v∃u((x = A ∧ y = B ∧ z = C) ∧ (w = D ∧ v = E ∧ u = F) ∧ φ) ↔ ∃w∃v∃u((x = A ∧ y = B ∧ z = C) ∧ ((w = D ∧ v = E ∧ u = F) ∧ φ))) |
| 3 | | 19.42vvv 1908 |
. . . 4
⊢ (∃w∃v∃u((x = A ∧ y = B ∧ z = C) ∧ ((w = D ∧ v = E ∧ u = F) ∧ φ)) ↔ ((x = A ∧ y = B ∧ z = C) ∧ ∃w∃v∃u((w = D ∧ v = E ∧ u = F) ∧ φ))) |
| 4 | 2, 3 | bitri 240 |
. . 3
⊢ (∃w∃v∃u((x = A ∧ y = B ∧ z = C) ∧ (w = D ∧ v = E ∧ u = F) ∧ φ) ↔ ((x = A ∧ y = B ∧ z = C) ∧ ∃w∃v∃u((w = D ∧ v = E ∧ u = F) ∧ φ))) |
| 5 | 4 | 3exbii 1584 |
. 2
⊢ (∃x∃y∃z∃w∃v∃u((x = A ∧ y = B ∧ z = C) ∧ (w = D ∧ v = E ∧ u = F) ∧ φ) ↔ ∃x∃y∃z((x = A ∧ y = B ∧ z = C) ∧ ∃w∃v∃u((w = D ∧ v = E ∧ u = F) ∧ φ))) |
| 6 | | ceqsex6v.1 |
. . . 4
⊢ A ∈
V |
| 7 | | ceqsex6v.2 |
. . . 4
⊢ B ∈
V |
| 8 | | ceqsex6v.3 |
. . . 4
⊢ C ∈
V |
| 9 | | ceqsex6v.7 |
. . . . . 6
⊢ (x = A →
(φ ↔ ψ)) |
| 10 | 9 | anbi2d 684 |
. . . . 5
⊢ (x = A →
(((w = D ∧ v = E ∧ u = F) ∧ φ) ↔ ((w = D ∧ v = E ∧ u = F) ∧ ψ))) |
| 11 | 10 | 3exbidv 1629 |
. . . 4
⊢ (x = A →
(∃w∃v∃u((w = D ∧ v = E ∧ u = F) ∧ φ) ↔
∃w∃v∃u((w = D ∧ v = E ∧ u = F) ∧ ψ))) |
| 12 | | ceqsex6v.8 |
. . . . . 6
⊢ (y = B →
(ψ ↔ χ)) |
| 13 | 12 | anbi2d 684 |
. . . . 5
⊢ (y = B →
(((w = D ∧ v = E ∧ u = F) ∧ ψ) ↔ ((w = D ∧ v = E ∧ u = F) ∧ χ))) |
| 14 | 13 | 3exbidv 1629 |
. . . 4
⊢ (y = B →
(∃w∃v∃u((w = D ∧ v = E ∧ u = F) ∧ ψ) ↔
∃w∃v∃u((w = D ∧ v = E ∧ u = F) ∧ χ))) |
| 15 | | ceqsex6v.9 |
. . . . . 6
⊢ (z = C →
(χ ↔ θ)) |
| 16 | 15 | anbi2d 684 |
. . . . 5
⊢ (z = C →
(((w = D ∧ v = E ∧ u = F) ∧ χ) ↔ ((w = D ∧ v = E ∧ u = F) ∧ θ))) |
| 17 | 16 | 3exbidv 1629 |
. . . 4
⊢ (z = C →
(∃w∃v∃u((w = D ∧ v = E ∧ u = F) ∧ χ) ↔
∃w∃v∃u((w = D ∧ v = E ∧ u = F) ∧ θ))) |
| 18 | 6, 7, 8, 11, 14, 17 | ceqsex3v 2898 |
. . 3
⊢ (∃x∃y∃z((x = A ∧ y = B ∧ z = C) ∧ ∃w∃v∃u((w = D ∧ v = E ∧ u = F) ∧ φ)) ↔ ∃w∃v∃u((w = D ∧ v = E ∧ u = F) ∧ θ)) |
| 19 | | ceqsex6v.4 |
. . . 4
⊢ D ∈
V |
| 20 | | ceqsex6v.5 |
. . . 4
⊢ E ∈
V |
| 21 | | ceqsex6v.6 |
. . . 4
⊢ F ∈
V |
| 22 | | ceqsex6v.10 |
. . . 4
⊢ (w = D →
(θ ↔ τ)) |
| 23 | | ceqsex6v.11 |
. . . 4
⊢ (v = E →
(τ ↔ η)) |
| 24 | | ceqsex6v.12 |
. . . 4
⊢ (u = F →
(η ↔ ζ)) |
| 25 | 19, 20, 21, 22, 23, 24 | ceqsex3v 2898 |
. . 3
⊢ (∃w∃v∃u((w = D ∧ v = E ∧ u = F) ∧ θ)
↔ ζ) |
| 26 | 18, 25 | bitri 240 |
. 2
⊢ (∃x∃y∃z((x = A ∧ y = B ∧ z = C) ∧ ∃w∃v∃u((w = D ∧ v = E ∧ u = F) ∧ φ)) ↔ ζ) |
| 27 | 5, 26 | bitri 240 |
1
⊢ (∃x∃y∃z∃w∃v∃u((x = A ∧ y = B ∧ z = C) ∧ (w = D ∧ v = E ∧ u = F) ∧ φ) ↔ ζ) |