New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2exbii | GIF version |
Description: Inference adding two existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
2exbii.1 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
2exbii | ⊢ (∃x∃yφ ↔ ∃x∃yψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2exbii.1 | . . 3 ⊢ (φ ↔ ψ) | |
2 | 1 | exbii 1582 | . 2 ⊢ (∃yφ ↔ ∃yψ) |
3 | 2 | exbii 1582 | 1 ⊢ (∃x∃yφ ↔ ∃x∃yψ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: 3exbii 1584 3exdistr 1910 ee4anv 1915 cbvex4v 2012 sbel2x 2125 2eu4 2287 2eu6 2289 rexcomf 2771 reean 2778 ceqsex3v 2898 ceqsex4v 2899 ceqsex8v 2901 vtocl3 2912 axxpprim 4091 elxpk2 4198 elvvk 4208 otkelins2kg 4254 otkelins3kg 4255 opkelcokg 4262 opksnelsik 4266 xpkvexg 4286 sikexlem 4296 dfpw12 4302 insklem 4305 ltfinex 4465 ncfinlower 4484 copsexg 4608 copsex4g 4611 opeqexb 4621 opabn0 4717 br1stg 4731 setconslem4 4735 setconslem6 4737 elswap 4741 dfsi2 4752 opelxp 4812 rabxp 4815 elxp3 4832 elcnv2 4891 cnvuni 4896 elres 4996 coass 5098 fununi 5161 cnvswap 5511 cnvsi 5519 dmsi 5520 dfoprab2 5559 dmoprab 5575 rnoprab 5577 resoprab 5582 fnov 5592 ov3 5600 ov6g 5601 mpt2mptx 5709 brtxp 5784 restxp 5787 oqelins4 5795 dmtxp 5803 brpprod 5840 dmpprod 5841 fnpprod 5844 lecex 6116 mucnc 6132 tcdi 6165 ce0nnul 6178 addccan2nclem1 6264 |
Copyright terms: Public domain | W3C validator |