![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > 2exbii | GIF version |
Description: Inference adding two existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
2exbii.1 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
2exbii | ⊢ (∃x∃yφ ↔ ∃x∃yψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2exbii.1 | . . 3 ⊢ (φ ↔ ψ) | |
2 | 1 | exbii 1582 | . 2 ⊢ (∃yφ ↔ ∃yψ) |
3 | 2 | exbii 1582 | 1 ⊢ (∃x∃yφ ↔ ∃x∃yψ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∃wex 1541 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: 3exbii 1584 3exdistr 1910 ee4anv 1915 cbvex4v 2012 sbel2x 2125 2eu4 2287 2eu6 2289 rexcomf 2770 reean 2777 ceqsex3v 2897 ceqsex4v 2898 ceqsex8v 2900 vtocl3 2911 axxpprim 4090 elxpk2 4197 elvvk 4207 otkelins2kg 4253 otkelins3kg 4254 opkelcokg 4261 opksnelsik 4265 xpkvexg 4285 sikexlem 4295 dfpw12 4301 insklem 4304 ltfinex 4464 ncfinlower 4483 copsexg 4607 copsex4g 4610 opeqexb 4620 opabn0 4716 br1stg 4730 setconslem4 4734 setconslem6 4736 elswap 4740 dfsi2 4751 opelxp 4811 rabxp 4814 elxp3 4831 elcnv2 4890 cnvuni 4895 elres 4995 coass 5097 fununi 5160 cnvswap 5510 cnvsi 5518 dmsi 5519 dfoprab2 5558 dmoprab 5574 rnoprab 5576 resoprab 5581 fnov 5591 ov3 5599 ov6g 5600 mpt2mptx 5708 brtxp 5783 restxp 5786 oqelins4 5794 dmtxp 5802 brpprod 5839 dmpprod 5840 fnpprod 5843 lecex 6115 mucnc 6131 tcdi 6164 ce0nnul 6177 addccan2nclem1 6263 |
Copyright terms: Public domain | W3C validator |