| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3jaao | GIF version | ||
| Description: Inference conjoining and disjoining the antecedents of three implications. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| 3jaao.1 | ⊢ (φ → (ψ → χ)) |
| 3jaao.2 | ⊢ (θ → (τ → χ)) |
| 3jaao.3 | ⊢ (η → (ζ → χ)) |
| Ref | Expression |
|---|---|
| 3jaao | ⊢ ((φ ∧ θ ∧ η) → ((ψ ∨ τ ∨ ζ) → χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaao.1 | . . 3 ⊢ (φ → (ψ → χ)) | |
| 2 | 1 | 3ad2ant1 976 | . 2 ⊢ ((φ ∧ θ ∧ η) → (ψ → χ)) |
| 3 | 3jaao.2 | . . 3 ⊢ (θ → (τ → χ)) | |
| 4 | 3 | 3ad2ant2 977 | . 2 ⊢ ((φ ∧ θ ∧ η) → (τ → χ)) |
| 5 | 3jaao.3 | . . 3 ⊢ (η → (ζ → χ)) | |
| 6 | 5 | 3ad2ant3 978 | . 2 ⊢ ((φ ∧ θ ∧ η) → (ζ → χ)) |
| 7 | 2, 4, 6 | 3jaod 1246 | 1 ⊢ ((φ ∧ θ ∧ η) → ((ψ ∨ τ ∨ ζ) → χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 933 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |