NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  a6e GIF version

Theorem a6e 1751
Description: Abbreviated version of ax6o 1750. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
a6e (xxφφ)

Proof of Theorem a6e
StepHypRef Expression
1 df-ex 1542 . 2 (xxφ ↔ ¬ x ¬ xφ)
2 ax6o 1750 . 2 x ¬ xφφ)
31, 2sylbi 187 1 (xxφφ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator