NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ax6o GIF version

Theorem ax6o 1750
Description: Show that the original axiom ax-6o 2137 can be derived from ax-6 1729 and others. See ax6 2147 for the rederivation of ax-6 1729 from ax-6o 2137.

Normally, ax6o 1750 should be used rather than ax-6o 2137, except by theorems specifically studying the latter's properties. (Contributed by NM, 21-May-2008.)

Assertion
Ref Expression
ax6o x ¬ xφφ)

Proof of Theorem ax6o
StepHypRef Expression
1 sp 1747 . 2 (xφφ)
2 ax-6 1729 . 2 xφx ¬ xφ)
31, 2nsyl4 134 1 x ¬ xφφ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542
This theorem is referenced by:  a6e  1751  modal-b  1752  hbnt  1775  nfndOLD  1792  equsalhwOLD  1839  ax9o  1950
  Copyright terms: Public domain W3C validator