| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ad2ant2l | GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((φ ∧ ψ) → χ) |
| Ref | Expression |
|---|---|
| ad2ant2l | ⊢ (((θ ∧ φ) ∧ (τ ∧ ψ)) → χ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((φ ∧ ψ) → χ) | |
| 2 | 1 | adantrl 696 | . 2 ⊢ ((φ ∧ (τ ∧ ψ)) → χ) |
| 3 | 2 | adantll 694 | 1 ⊢ (((θ ∧ φ) ∧ (τ ∧ ψ)) → χ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: tfin11 4494 ce0addcnnul 6180 nchoicelem19 6308 |
| Copyright terms: Public domain | W3C validator |