NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ad2ant2l GIF version

Theorem ad2ant2l 726
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
ad2ant2.1 ((φ ψ) → χ)
Assertion
Ref Expression
ad2ant2l (((θ φ) (τ ψ)) → χ)

Proof of Theorem ad2ant2l
StepHypRef Expression
1 ad2ant2.1 . . 3 ((φ ψ) → χ)
21adantrl 696 . 2 ((φ (τ ψ)) → χ)
32adantll 694 1 (((θ φ) (τ ψ)) → χ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  tfin11  4493  ce0addcnnul  6179  nchoicelem19  6307
  Copyright terms: Public domain W3C validator