Step | Hyp | Ref
| Expression |
1 | | tfinnnul 4491 |
. . . . . . . 8
⊢ ((M ∈ Nn ∧ M ≠ ∅) →
Tfin M ≠ ∅) |
2 | 1 | ex 423 |
. . . . . . 7
⊢ (M ∈ Nn → (M ≠
∅ → Tfin M
≠ ∅)) |
3 | 2 | necon4d 2580 |
. . . . . 6
⊢ (M ∈ Nn → ( Tfin
M = ∅
→ M = ∅)) |
4 | 3 | 3ad2ant1 976 |
. . . . 5
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ Tfin M =
Tfin N) → ( Tfin M =
∅ → M = ∅)) |
5 | 4 | impcom 419 |
. . . 4
⊢ (( Tfin M =
∅ ∧
(M ∈
Nn ∧ N ∈ Nn ∧ Tfin M =
Tfin N)) → M =
∅) |
6 | | eqeq1 2359 |
. . . . . . . 8
⊢ ( Tfin M =
Tfin N → ( Tfin M =
∅ ↔ Tfin N =
∅)) |
7 | 6 | adantl 452 |
. . . . . . 7
⊢ ((N ∈ Nn ∧ Tfin M =
Tfin N) → ( Tfin M =
∅ ↔ Tfin N =
∅)) |
8 | | tfinnnul 4491 |
. . . . . . . . . 10
⊢ ((N ∈ Nn ∧ N ≠ ∅) →
Tfin N ≠ ∅) |
9 | 8 | ex 423 |
. . . . . . . . 9
⊢ (N ∈ Nn → (N ≠
∅ → Tfin N
≠ ∅)) |
10 | 9 | necon4d 2580 |
. . . . . . . 8
⊢ (N ∈ Nn → ( Tfin
N = ∅
→ N = ∅)) |
11 | 10 | adantr 451 |
. . . . . . 7
⊢ ((N ∈ Nn ∧ Tfin M =
Tfin N) → ( Tfin N =
∅ → N = ∅)) |
12 | 7, 11 | sylbid 206 |
. . . . . 6
⊢ ((N ∈ Nn ∧ Tfin M =
Tfin N) → ( Tfin M =
∅ → N = ∅)) |
13 | 12 | 3adant1 973 |
. . . . 5
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ Tfin M =
Tfin N) → ( Tfin M =
∅ → N = ∅)) |
14 | 13 | impcom 419 |
. . . 4
⊢ (( Tfin M =
∅ ∧
(M ∈
Nn ∧ N ∈ Nn ∧ Tfin M =
Tfin N)) → N =
∅) |
15 | 5, 14 | eqtr4d 2388 |
. . 3
⊢ (( Tfin M =
∅ ∧
(M ∈
Nn ∧ N ∈ Nn ∧ Tfin M =
Tfin N)) → M =
N) |
16 | 15 | ex 423 |
. 2
⊢ ( Tfin M =
∅ → ((M ∈ Nn ∧ N ∈ Nn ∧ Tfin M =
Tfin N) → M =
N)) |
17 | | neeq1 2525 |
. . . . . . . 8
⊢ ( Tfin M =
Tfin N → ( Tfin M
≠ ∅ ↔ Tfin N
≠ ∅)) |
18 | 17 | biimpd 198 |
. . . . . . 7
⊢ ( Tfin M =
Tfin N → ( Tfin M
≠ ∅ → Tfin N
≠ ∅)) |
19 | 18 | ancld 536 |
. . . . . 6
⊢ ( Tfin M =
Tfin N → ( Tfin M
≠ ∅ → ( Tfin M
≠ ∅ ∧
Tfin N ≠ ∅))) |
20 | | tfineq 4489 |
. . . . . . . . 9
⊢ (M = ∅ →
Tfin M = Tfin
∅) |
21 | | tfinnul 4492 |
. . . . . . . . 9
⊢ Tfin ∅ =
∅ |
22 | 20, 21 | syl6eq 2401 |
. . . . . . . 8
⊢ (M = ∅ →
Tfin M = ∅) |
23 | 22 | necon3i 2556 |
. . . . . . 7
⊢ ( Tfin M
≠ ∅ → M ≠ ∅) |
24 | | tfineq 4489 |
. . . . . . . . 9
⊢ (N = ∅ →
Tfin N = Tfin
∅) |
25 | 24, 21 | syl6eq 2401 |
. . . . . . . 8
⊢ (N = ∅ →
Tfin N = ∅) |
26 | 25 | necon3i 2556 |
. . . . . . 7
⊢ ( Tfin N
≠ ∅ → N ≠ ∅) |
27 | 23, 26 | anim12i 549 |
. . . . . 6
⊢ (( Tfin M
≠ ∅ ∧
Tfin N ≠ ∅) →
(M ≠ ∅ ∧ N ≠ ∅)) |
28 | 19, 27 | syl6 29 |
. . . . 5
⊢ ( Tfin M =
Tfin N → ( Tfin M
≠ ∅ → (M ≠ ∅ ∧ N ≠ ∅))) |
29 | 28 | 3ad2ant3 978 |
. . . 4
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ Tfin M =
Tfin N) → ( Tfin M
≠ ∅ → (M ≠ ∅ ∧ N ≠ ∅))) |
30 | | tfinprop 4490 |
. . . . . . 7
⊢ ((M ∈ Nn ∧ M ≠ ∅) →
( Tfin M ∈ Nn ∧ ∃a ∈ M ℘1a ∈ Tfin M)) |
31 | 30 | ex 423 |
. . . . . 6
⊢ (M ∈ Nn → (M ≠
∅ → ( Tfin M
∈ Nn ∧ ∃a ∈ M ℘1a ∈ Tfin M))) |
32 | 31 | 3ad2ant1 976 |
. . . . 5
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ Tfin M =
Tfin N) → (M
≠ ∅ → ( Tfin M
∈ Nn ∧ ∃a ∈ M ℘1a ∈ Tfin M))) |
33 | | tfinprop 4490 |
. . . . . . 7
⊢ ((N ∈ Nn ∧ N ≠ ∅) →
( Tfin N ∈ Nn ∧ ∃b ∈ N ℘1b ∈ Tfin N)) |
34 | 33 | ex 423 |
. . . . . 6
⊢ (N ∈ Nn → (N ≠
∅ → ( Tfin N
∈ Nn ∧ ∃b ∈ N ℘1b ∈ Tfin N))) |
35 | 34 | 3ad2ant2 977 |
. . . . 5
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ Tfin M =
Tfin N) → (N
≠ ∅ → ( Tfin N
∈ Nn ∧ ∃b ∈ N ℘1b ∈ Tfin N))) |
36 | | reeanv 2779 |
. . . . . . . 8
⊢ (∃a ∈ M ∃b ∈ N (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
↔ (∃a ∈ M ℘1a ∈ Tfin M
∧ ∃b ∈ N ℘1b ∈ Tfin N)) |
37 | | simp31 991 |
. . . . . . . . . . . . 13
⊢ (((a ∈ M ∧ b ∈ N) ∧ (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
∧ (M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N))
→ M ∈ Nn
) |
38 | | tfincl 4493 |
. . . . . . . . . . . . 13
⊢ (M ∈ Nn → Tfin
M ∈ Nn ) |
39 | 37, 38 | syl 15 |
. . . . . . . . . . . 12
⊢ (((a ∈ M ∧ b ∈ N) ∧ (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
∧ (M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N))
→ Tfin M ∈ Nn ) |
40 | | simp2l 981 |
. . . . . . . . . . . 12
⊢ (((a ∈ M ∧ b ∈ N) ∧ (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
∧ (M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N))
→ ℘1a ∈ Tfin M) |
41 | | simp2r 982 |
. . . . . . . . . . . . 13
⊢ (((a ∈ M ∧ b ∈ N) ∧ (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
∧ (M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N))
→ ℘1b ∈ Tfin N) |
42 | | simp33 993 |
. . . . . . . . . . . . 13
⊢ (((a ∈ M ∧ b ∈ N) ∧ (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
∧ (M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N))
→ Tfin M = Tfin
N) |
43 | 41, 42 | eleqtrrd 2430 |
. . . . . . . . . . . 12
⊢ (((a ∈ M ∧ b ∈ N) ∧ (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
∧ (M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N))
→ ℘1b ∈ Tfin M) |
44 | | ncfinlower 4484 |
. . . . . . . . . . . 12
⊢ (( Tfin M
∈ Nn ∧ ℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin M)
→ ∃p ∈ Nn (a ∈ p ∧ b ∈ p)) |
45 | 39, 40, 43, 44 | syl3anc 1182 |
. . . . . . . . . . 11
⊢ (((a ∈ M ∧ b ∈ N) ∧ (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
∧ (M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N))
→ ∃p ∈ Nn (a ∈ p ∧ b ∈ p)) |
46 | | simpl31 1036 |
. . . . . . . . . . . . . . 15
⊢ ((((a ∈ M ∧ b ∈ N) ∧ (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
∧ (M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N))
∧ (p ∈ Nn ∧ (a ∈ p ∧ b ∈ p))) →
M ∈ Nn ) |
47 | | simprl 732 |
. . . . . . . . . . . . . . 15
⊢ ((((a ∈ M ∧ b ∈ N) ∧ (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
∧ (M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N))
∧ (p ∈ Nn ∧ (a ∈ p ∧ b ∈ p))) →
p ∈ Nn ) |
48 | | simpl1l 1006 |
. . . . . . . . . . . . . . 15
⊢ ((((a ∈ M ∧ b ∈ N) ∧ (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
∧ (M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N))
∧ (p ∈ Nn ∧ (a ∈ p ∧ b ∈ p))) →
a ∈
M) |
49 | | simprrl 740 |
. . . . . . . . . . . . . . 15
⊢ ((((a ∈ M ∧ b ∈ N) ∧ (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
∧ (M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N))
∧ (p ∈ Nn ∧ (a ∈ p ∧ b ∈ p))) →
a ∈
p) |
50 | | nnceleq 4431 |
. . . . . . . . . . . . . . 15
⊢ (((M ∈ Nn ∧ p ∈ Nn ) ∧ (a ∈ M ∧ a ∈ p)) → M =
p) |
51 | 46, 47, 48, 49, 50 | syl22anc 1183 |
. . . . . . . . . . . . . 14
⊢ ((((a ∈ M ∧ b ∈ N) ∧ (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
∧ (M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N))
∧ (p ∈ Nn ∧ (a ∈ p ∧ b ∈ p))) →
M = p) |
52 | | simpl32 1037 |
. . . . . . . . . . . . . . 15
⊢ ((((a ∈ M ∧ b ∈ N) ∧ (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
∧ (M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N))
∧ (p ∈ Nn ∧ (a ∈ p ∧ b ∈ p))) →
N ∈ Nn ) |
53 | | simpl1r 1007 |
. . . . . . . . . . . . . . 15
⊢ ((((a ∈ M ∧ b ∈ N) ∧ (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
∧ (M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N))
∧ (p ∈ Nn ∧ (a ∈ p ∧ b ∈ p))) →
b ∈
N) |
54 | | simprrr 741 |
. . . . . . . . . . . . . . 15
⊢ ((((a ∈ M ∧ b ∈ N) ∧ (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
∧ (M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N))
∧ (p ∈ Nn ∧ (a ∈ p ∧ b ∈ p))) →
b ∈
p) |
55 | | nnceleq 4431 |
. . . . . . . . . . . . . . 15
⊢ (((N ∈ Nn ∧ p ∈ Nn ) ∧ (b ∈ N ∧ b ∈ p)) → N =
p) |
56 | 52, 47, 53, 54, 55 | syl22anc 1183 |
. . . . . . . . . . . . . 14
⊢ ((((a ∈ M ∧ b ∈ N) ∧ (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
∧ (M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N))
∧ (p ∈ Nn ∧ (a ∈ p ∧ b ∈ p))) →
N = p) |
57 | 51, 56 | eqtr4d 2388 |
. . . . . . . . . . . . 13
⊢ ((((a ∈ M ∧ b ∈ N) ∧ (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
∧ (M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N))
∧ (p ∈ Nn ∧ (a ∈ p ∧ b ∈ p))) →
M = N) |
58 | 57 | expr 598 |
. . . . . . . . . . . 12
⊢ ((((a ∈ M ∧ b ∈ N) ∧ (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
∧ (M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N))
∧ p ∈ Nn ) →
((a ∈
p ∧
b ∈
p) → M = N)) |
59 | 58 | rexlimdva 2739 |
. . . . . . . . . . 11
⊢ (((a ∈ M ∧ b ∈ N) ∧ (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
∧ (M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N))
→ (∃p ∈ Nn (a ∈ p ∧ b ∈ p) →
M = N)) |
60 | 45, 59 | mpd 14 |
. . . . . . . . . 10
⊢ (((a ∈ M ∧ b ∈ N) ∧ (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
∧ (M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N))
→ M = N) |
61 | 60 | 3exp 1150 |
. . . . . . . . 9
⊢ ((a ∈ M ∧ b ∈ N) → ((℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
→ ((M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N)
→ M = N))) |
62 | 61 | rexlimivv 2744 |
. . . . . . . 8
⊢ (∃a ∈ M ∃b ∈ N (℘1a ∈ Tfin M
∧ ℘1b ∈ Tfin N)
→ ((M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N)
→ M = N)) |
63 | 36, 62 | sylbir 204 |
. . . . . . 7
⊢ ((∃a ∈ M ℘1a ∈ Tfin M
∧ ∃b ∈ N ℘1b ∈ Tfin N)
→ ((M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N)
→ M = N)) |
64 | 63 | ad2ant2l 726 |
. . . . . 6
⊢ ((( Tfin M
∈ Nn ∧ ∃a ∈ M ℘1a ∈ Tfin M)
∧ ( Tfin N
∈ Nn ∧ ∃b ∈ N ℘1b ∈ Tfin N))
→ ((M ∈ Nn ∧ N ∈ Nn ∧ Tfin
M = Tfin N)
→ M = N)) |
65 | 64 | com12 27 |
. . . . 5
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ Tfin M =
Tfin N) → ((( Tfin M
∈ Nn ∧ ∃a ∈ M ℘1a ∈ Tfin M)
∧ ( Tfin N
∈ Nn ∧ ∃b ∈ N ℘1b ∈ Tfin N))
→ M = N)) |
66 | 32, 35, 65 | syl2and 469 |
. . . 4
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ Tfin M =
Tfin N) → ((M
≠ ∅ ∧
N ≠ ∅) → M =
N)) |
67 | 29, 66 | syld 40 |
. . 3
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ Tfin M =
Tfin N) → ( Tfin M
≠ ∅ → M = N)) |
68 | 67 | com12 27 |
. 2
⊢ ( Tfin M
≠ ∅ → ((M ∈ Nn ∧ N ∈ Nn ∧ Tfin M =
Tfin N) → M =
N)) |
69 | 16, 68 | pm2.61ine 2593 |
1
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ Tfin M =
Tfin N) → M =
N) |