New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > adantrl | GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
adant2.1 | ⊢ ((φ ∧ ψ) → χ) |
Ref | Expression |
---|---|
adantrl | ⊢ ((φ ∧ (θ ∧ ψ)) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 447 | . 2 ⊢ ((θ ∧ ψ) → ψ) | |
2 | adant2.1 | . 2 ⊢ ((φ ∧ ψ) → χ) | |
3 | 1, 2 | sylan2 460 | 1 ⊢ ((φ ∧ (θ ∧ ψ)) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: ad2ant2l 726 ad2ant2rl 729 consensus 925 3ad2antr2 1121 3ad2antr3 1122 sbcom 2089 tfinltfin 4502 evenodddisj 4517 spfininduct 4541 foco 5280 isocnv 5492 isores2 5494 f1oiso2 5501 fvfullfunlem3 5864 clos1induct 5881 weds 5939 ncspw1eu 6160 tlecg 6231 addccan2nc 6266 nchoicelem12 6301 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |