NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  adantrl GIF version

Theorem adantrl 696
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypothesis
Ref Expression
adant2.1 ((φ ψ) → χ)
Assertion
Ref Expression
adantrl ((φ (θ ψ)) → χ)

Proof of Theorem adantrl
StepHypRef Expression
1 simpr 447 . 2 ((θ ψ) → ψ)
2 adant2.1 . 2 ((φ ψ) → χ)
31, 2sylan2 460 1 ((φ (θ ψ)) → χ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  ad2ant2l  726  ad2ant2rl  729  consensus  925  3ad2antr2  1121  3ad2antr3  1122  sbcom  2089  tfinltfin  4502  evenodddisj  4517  spfininduct  4541  foco  5280  isocnv  5492  isores2  5494  f1oiso2  5501  fvfullfunlem3  5864  clos1induct  5881  weds  5939  ncspw1eu  6160  tlecg  6231  addccan2nc  6266  nchoicelem12  6301  fnfrec  6321
  Copyright terms: Public domain W3C validator