New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ad2ant2r | GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((φ ∧ ψ) → χ) |
Ref | Expression |
---|---|
ad2ant2r | ⊢ (((φ ∧ θ) ∧ (ψ ∧ τ)) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((φ ∧ ψ) → χ) | |
2 | 1 | adantrr 697 | . 2 ⊢ ((φ ∧ (ψ ∧ τ)) → χ) |
3 | 2 | adantlr 695 | 1 ⊢ (((φ ∧ θ) ∧ (ψ ∧ τ)) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: vfinspsslem1 4551 foco 5280 isotr 5496 |
Copyright terms: Public domain | W3C validator |