Step | Hyp | Ref
| Expression |
1 | | nchoicelem18 6306 |
. . 3
⊢ {x ∣ ( Spac ‘x) ∈ Fin } ∈
V |
2 | | fveq2 5328 |
. . . 4
⊢ (x = m → (
Spac ‘x) = ( Spac
‘m)) |
3 | 2 | eleq1d 2419 |
. . 3
⊢ (x = m → ((
Spac ‘x) ∈ Fin ↔ ( Spac ‘m) ∈ Fin )) |
4 | | fveq2 5328 |
. . . 4
⊢ (x = n → (
Spac ‘x) = ( Spac
‘n)) |
5 | 4 | eleq1d 2419 |
. . 3
⊢ (x = n → ((
Spac ‘x) ∈ Fin ↔ ( Spac ‘n) ∈ Fin )) |
6 | | id 19 |
. . 3
⊢ ( ≤c
We NC →
≤c We NC ) |
7 | | vvex 4109 |
. . . . 5
⊢ V ∈ V |
8 | 7 | ncelncsi 6121 |
. . . 4
⊢ Nc V ∈ NC |
9 | | ltcpw1pwg 6202 |
. . . . . . . . 9
⊢ (V ∈ V → Nc ℘1V <c Nc ℘V) |
10 | 7, 9 | ax-mp 5 |
. . . . . . . 8
⊢ Nc ℘1V
<c Nc ℘V |
11 | | df1c2 4168 |
. . . . . . . . 9
⊢
1c = ℘1V |
12 | 11 | nceqi 6109 |
. . . . . . . 8
⊢ Nc 1c = Nc ℘1V |
13 | | pwv 3886 |
. . . . . . . . . 10
⊢ ℘V = V |
14 | 13 | nceqi 6109 |
. . . . . . . . 9
⊢ Nc ℘V = Nc V |
15 | 14 | eqcomi 2357 |
. . . . . . . 8
⊢ Nc V = Nc ℘V |
16 | 10, 12, 15 | 3brtr4i 4667 |
. . . . . . 7
⊢ Nc 1c <c Nc V |
17 | | nchoicelem8 6296 |
. . . . . . . 8
⊢ (( ≤c
We NC ∧ Nc V ∈ NC ) → (¬ (
Nc V ↑c
0c) ∈ NC ↔ Nc
1c <c Nc
V)) |
18 | 8, 17 | mpan2 652 |
. . . . . . 7
⊢ ( ≤c
We NC → (¬ (
Nc V ↑c
0c) ∈ NC ↔ Nc
1c <c Nc
V)) |
19 | 16, 18 | mpbiri 224 |
. . . . . 6
⊢ ( ≤c
We NC → ¬ (
Nc V ↑c
0c) ∈ NC ) |
20 | | nchoicelem3 6291 |
. . . . . 6
⊢ (( Nc V ∈ NC ∧ ¬ ( Nc V ↑c 0c)
∈ NC ) → (
Spac ‘ Nc V) = { Nc
V}) |
21 | 8, 19, 20 | sylancr 644 |
. . . . 5
⊢ ( ≤c
We NC → ( Spac ‘ Nc
V) = { Nc V}) |
22 | | snfi 4431 |
. . . . 5
⊢ { Nc V} ∈ Fin |
23 | 21, 22 | syl6eqel 2441 |
. . . 4
⊢ ( ≤c
We NC → ( Spac ‘ Nc
V) ∈ Fin
) |
24 | | fveq2 5328 |
. . . . . 6
⊢ (x = Nc V → ( Spac ‘x) = ( Spac
‘ Nc V)) |
25 | 24 | eleq1d 2419 |
. . . . 5
⊢ (x = Nc V → ((
Spac ‘x) ∈ Fin ↔ ( Spac ‘ Nc
V) ∈ Fin
)) |
26 | 25 | rspcev 2955 |
. . . 4
⊢ (( Nc V ∈ NC ∧ ( Spac ‘ Nc
V) ∈ Fin )
→ ∃x ∈ NC ( Spac
‘x) ∈ Fin
) |
27 | 8, 23, 26 | sylancr 644 |
. . 3
⊢ ( ≤c
We NC → ∃x ∈ NC ( Spac ‘x) ∈ Fin ) |
28 | 1, 3, 5, 6, 27 | weds 5938 |
. 2
⊢ ( ≤c
We NC → ∃m ∈ NC (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) |
29 | | simpll 730 |
. . . . . . 7
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) →
≤c We NC ) |
30 | | df-we 5906 |
. . . . . . . . . . 11
⊢ We = ( Or ∩ Fr ) |
31 | 30 | breqi 4645 |
. . . . . . . . . 10
⊢ ( ≤c
We NC ↔
≤c ( Or ∩ Fr ) NC ) |
32 | | brin 4693 |
. . . . . . . . . 10
⊢ ( ≤c
( Or ∩ Fr ) NC ↔ ( ≤c Or NC ∧ ≤c Fr
NC )) |
33 | 31, 32 | bitri 240 |
. . . . . . . . 9
⊢ ( ≤c
We NC ↔ (
≤c Or NC ∧ ≤c
Fr NC
)) |
34 | 33 | simplbi 446 |
. . . . . . . 8
⊢ ( ≤c
We NC →
≤c Or NC ) |
35 | | sopc 5934 |
. . . . . . . . . 10
⊢ ( ≤c
Or NC ↔ (
≤c Po NC ∧ ≤c
Connex NC
)) |
36 | 35 | simplbi 446 |
. . . . . . . . 9
⊢ ( ≤c
Or NC →
≤c Po NC ) |
37 | | porta 5933 |
. . . . . . . . . 10
⊢ ( ≤c
Po NC ↔ (
≤c Ref NC ∧ ≤c
Trans NC ∧ ≤c Antisym NC
)) |
38 | 37 | simp3bi 972 |
. . . . . . . . 9
⊢ ( ≤c
Po NC →
≤c Antisym NC ) |
39 | 36, 38 | syl 15 |
. . . . . . . 8
⊢ ( ≤c
Or NC →
≤c Antisym NC ) |
40 | 34, 39 | syl 15 |
. . . . . . 7
⊢ ( ≤c
We NC →
≤c Antisym NC ) |
41 | 29, 40 | syl 15 |
. . . . . 6
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) →
≤c Antisym NC ) |
42 | | simplr 731 |
. . . . . . 7
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → m ∈ NC ) |
43 | | tccl 6160 |
. . . . . . 7
⊢ (m ∈ NC → Tc
m ∈ NC ) |
44 | 42, 43 | syl 15 |
. . . . . 6
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → Tc m
∈ NC
) |
45 | | simprr 733 |
. . . . . . . 8
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n)) |
46 | | simprl 732 |
. . . . . . . . . 10
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → ( Spac ‘m) ∈ Fin ) |
47 | | nchoicelem17 6305 |
. . . . . . . . . 10
⊢ (( ≤c
We NC ∧ m ∈ NC ∧ ( Spac
‘m) ∈ Fin ) → ((
Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))) |
48 | 29, 42, 46, 47 | syl3anc 1182 |
. . . . . . . . 9
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))) |
49 | 48 | simpld 445 |
. . . . . . . 8
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → ( Spac ‘ Tc m)
∈ Fin
) |
50 | | fveq2 5328 |
. . . . . . . . . . 11
⊢ (n = Tc
m → ( Spac ‘n) = ( Spac
‘ Tc m)) |
51 | 50 | eleq1d 2419 |
. . . . . . . . . 10
⊢ (n = Tc
m → (( Spac ‘n) ∈ Fin ↔ ( Spac ‘ Tc m)
∈ Fin
)) |
52 | | breq2 4643 |
. . . . . . . . . 10
⊢ (n = Tc
m → (m ≤c n ↔ m
≤c Tc m)) |
53 | 51, 52 | imbi12d 311 |
. . . . . . . . 9
⊢ (n = Tc
m → ((( Spac ‘n) ∈ Fin → m
≤c n) ↔ (( Spac ‘ Tc m)
∈ Fin →
m ≤c Tc m))) |
54 | 53 | rspcv 2951 |
. . . . . . . 8
⊢ ( Tc m
∈ NC →
(∀n
∈ NC (( Spac ‘n) ∈ Fin → m
≤c n) → (( Spac ‘ Tc m)
∈ Fin →
m ≤c Tc m))) |
55 | 44, 45, 49, 54 | syl3c 57 |
. . . . . . 7
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → m ≤c Tc m) |
56 | | letc 6231 |
. . . . . . . . . 10
⊢ ((m ∈ NC ∧ m ∈ NC ∧ m ≤c Tc m)
→ ∃p ∈ NC m = Tc p) |
57 | 56 | 3expia 1153 |
. . . . . . . . 9
⊢ ((m ∈ NC ∧ m ∈ NC ) → (m
≤c Tc m → ∃p ∈ NC m = Tc
p)) |
58 | 42, 42, 57 | syl2anc 642 |
. . . . . . . 8
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → (m ≤c Tc m
→ ∃p ∈ NC m = Tc p)) |
59 | | nchoicelem12 6300 |
. . . . . . . . . . . . . . . 16
⊢ ((p ∈ NC ∧ ( Spac ‘ Tc p)
∈ Fin ) → (
Spac ‘p) ∈ Fin ) |
60 | 59 | ad2ant2lr 728 |
. . . . . . . . . . . . . . 15
⊢ (((
≤c We NC ∧ p ∈ NC ) ∧ (( Spac ‘ Tc p)
∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → Tc p
≤c n))) → ( Spac ‘p) ∈ Fin ) |
61 | | fveq2 5328 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (n = p → (
Spac ‘n) = ( Spac
‘p)) |
62 | 61 | eleq1d 2419 |
. . . . . . . . . . . . . . . . . . 19
⊢ (n = p → ((
Spac ‘n) ∈ Fin ↔ ( Spac ‘p) ∈ Fin )) |
63 | | breq2 4643 |
. . . . . . . . . . . . . . . . . . 19
⊢ (n = p → (
Tc p ≤c n ↔ Tc
p ≤c p)) |
64 | 62, 63 | imbi12d 311 |
. . . . . . . . . . . . . . . . . 18
⊢ (n = p → (((
Spac ‘n) ∈ Fin → Tc
p ≤c n) ↔ (( Spac ‘p) ∈ Fin → Tc
p ≤c p))) |
65 | 64 | rspcv 2951 |
. . . . . . . . . . . . . . . . 17
⊢ (p ∈ NC → (∀n ∈ NC (( Spac
‘n) ∈ Fin → Tc p
≤c n) → (( Spac ‘p) ∈ Fin → Tc
p ≤c p))) |
66 | 65 | imp 418 |
. . . . . . . . . . . . . . . 16
⊢ ((p ∈ NC ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → Tc
p ≤c n)) → (( Spac ‘p) ∈ Fin → Tc
p ≤c p)) |
67 | 66 | ad2ant2l 726 |
. . . . . . . . . . . . . . 15
⊢ (((
≤c We NC ∧ p ∈ NC ) ∧ (( Spac ‘ Tc p)
∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → Tc p
≤c n))) → (( Spac ‘p) ∈ Fin → Tc
p ≤c p)) |
68 | 60, 67 | mpd 14 |
. . . . . . . . . . . . . 14
⊢ (((
≤c We NC ∧ p ∈ NC ) ∧ (( Spac ‘ Tc p)
∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → Tc p
≤c n))) → Tc p
≤c p) |
69 | | simplr 731 |
. . . . . . . . . . . . . . . 16
⊢ (((
≤c We NC ∧ p ∈ NC ) ∧ (( Spac ‘ Tc p)
∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → Tc p
≤c n))) → p ∈ NC ) |
70 | | tccl 6160 |
. . . . . . . . . . . . . . . 16
⊢ (p ∈ NC → Tc
p ∈ NC ) |
71 | 69, 70 | syl 15 |
. . . . . . . . . . . . . . 15
⊢ (((
≤c We NC ∧ p ∈ NC ) ∧ (( Spac ‘ Tc p)
∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → Tc p
≤c n))) → Tc p
∈ NC
) |
72 | | tlecg 6230 |
. . . . . . . . . . . . . . 15
⊢ (( Tc p
∈ NC ∧ p ∈ NC ) → ( Tc p
≤c p ↔ Tc Tc
p ≤c Tc p)) |
73 | 71, 69, 72 | syl2anc 642 |
. . . . . . . . . . . . . 14
⊢ (((
≤c We NC ∧ p ∈ NC ) ∧ (( Spac ‘ Tc p)
∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → Tc p
≤c n))) → ( Tc p
≤c p ↔ Tc Tc
p ≤c Tc p)) |
74 | 68, 73 | mpbid 201 |
. . . . . . . . . . . . 13
⊢ (((
≤c We NC ∧ p ∈ NC ) ∧ (( Spac ‘ Tc p)
∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → Tc p
≤c n))) → Tc Tc
p ≤c Tc p) |
75 | | fveq2 5328 |
. . . . . . . . . . . . . . . . 17
⊢ (m = Tc
p → ( Spac ‘m) = ( Spac
‘ Tc p)) |
76 | 75 | eleq1d 2419 |
. . . . . . . . . . . . . . . 16
⊢ (m = Tc
p → (( Spac ‘m) ∈ Fin ↔ ( Spac ‘ Tc p)
∈ Fin
)) |
77 | | breq1 4642 |
. . . . . . . . . . . . . . . . . 18
⊢ (m = Tc
p → (m ≤c n ↔ Tc
p ≤c n)) |
78 | 77 | imbi2d 307 |
. . . . . . . . . . . . . . . . 17
⊢ (m = Tc
p → ((( Spac ‘n) ∈ Fin → m
≤c n) ↔ (( Spac ‘n) ∈ Fin → Tc
p ≤c n))) |
79 | 78 | ralbidv 2634 |
. . . . . . . . . . . . . . . 16
⊢ (m = Tc
p → (∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n) ↔ ∀n ∈ NC (( Spac ‘n) ∈ Fin → Tc
p ≤c n))) |
80 | 76, 79 | anbi12d 691 |
. . . . . . . . . . . . . . 15
⊢ (m = Tc
p → ((( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n)) ↔ (( Spac ‘ Tc p)
∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → Tc p
≤c n)))) |
81 | 80 | anbi2d 684 |
. . . . . . . . . . . . . 14
⊢ (m = Tc
p → ((( ≤c We NC ∧ p ∈ NC ) ∧ (( Spac
‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → m ≤c n))) ↔ (( ≤c We NC ∧ p ∈ NC ) ∧ (( Spac
‘ Tc p) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → Tc
p ≤c n))))) |
82 | | tceq 6158 |
. . . . . . . . . . . . . . 15
⊢ (m = Tc
p → Tc m =
Tc Tc p) |
83 | | id 19 |
. . . . . . . . . . . . . . 15
⊢ (m = Tc
p → m = Tc
p) |
84 | 82, 83 | breq12d 4652 |
. . . . . . . . . . . . . 14
⊢ (m = Tc
p → ( Tc m
≤c m ↔ Tc Tc
p ≤c Tc p)) |
85 | 81, 84 | imbi12d 311 |
. . . . . . . . . . . . 13
⊢ (m = Tc
p → (((( ≤c We NC ∧ p ∈ NC ) ∧ (( Spac
‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → m ≤c n))) → Tc m
≤c m) ↔ (((
≤c We NC ∧ p ∈ NC ) ∧ (( Spac ‘ Tc p)
∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → Tc p
≤c n))) → Tc Tc
p ≤c Tc p))) |
86 | 74, 85 | mpbiri 224 |
. . . . . . . . . . . 12
⊢ (m = Tc
p → ((( ≤c We NC ∧ p ∈ NC ) ∧ (( Spac
‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → m ≤c n))) → Tc m
≤c m)) |
87 | 86 | com12 27 |
. . . . . . . . . . 11
⊢ (((
≤c We NC ∧ p ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → (m = Tc
p → Tc m
≤c m)) |
88 | 87 | an32s 779 |
. . . . . . . . . 10
⊢ (((
≤c We NC ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) ∧ p ∈ NC ) →
(m = Tc p
→ Tc m ≤c m)) |
89 | 88 | rexlimdva 2738 |
. . . . . . . . 9
⊢ (( ≤c
We NC ∧ (( Spac
‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → m ≤c n))) → (∃p ∈ NC m = Tc
p → Tc m
≤c m)) |
90 | 89 | adantlr 695 |
. . . . . . . 8
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → (∃p ∈ NC m = Tc
p → Tc m
≤c m)) |
91 | 58, 90 | syld 40 |
. . . . . . 7
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → (m ≤c Tc m
→ Tc m ≤c m)) |
92 | 55, 91 | mpd 14 |
. . . . . 6
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → Tc m
≤c m) |
93 | 41, 44, 42, 92, 55 | antid 5929 |
. . . . 5
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → Tc m =
m) |
94 | 93 | exp32 588 |
. . . 4
⊢ (( ≤c
We NC ∧ m ∈ NC ) → (( Spac ‘m) ∈ Fin → (∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n) → Tc m =
m))) |
95 | 94 | imdistand 673 |
. . 3
⊢ (( ≤c
We NC ∧ m ∈ NC ) → (((
Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n)) → (( Spac ‘m) ∈ Fin ∧ Tc m =
m))) |
96 | 95 | reximdva 2726 |
. 2
⊢ ( ≤c
We NC → (∃m ∈ NC (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n)) → ∃m ∈ NC (( Spac ‘m) ∈ Fin ∧ Tc m =
m))) |
97 | 28, 96 | mpd 14 |
1
⊢ ( ≤c
We NC → ∃m ∈ NC (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) |