| Step | Hyp | Ref
 | Expression | 
| 1 |   | nchoicelem18 6307 | 
. . 3
⊢ {x ∣ ( Spac ‘x) ∈ Fin } ∈
V | 
| 2 |   | fveq2 5329 | 
. . . 4
⊢ (x = m → (
Spac ‘x) = ( Spac
‘m)) | 
| 3 | 2 | eleq1d 2419 | 
. . 3
⊢ (x = m → ((
Spac ‘x) ∈ Fin ↔ ( Spac ‘m) ∈ Fin )) | 
| 4 |   | fveq2 5329 | 
. . . 4
⊢ (x = n → (
Spac ‘x) = ( Spac
‘n)) | 
| 5 | 4 | eleq1d 2419 | 
. . 3
⊢ (x = n → ((
Spac ‘x) ∈ Fin ↔ ( Spac ‘n) ∈ Fin )) | 
| 6 |   | id 19 | 
. . 3
⊢ ( ≤c
We NC →
≤c We NC ) | 
| 7 |   | vvex 4110 | 
. . . . 5
⊢ V ∈ V | 
| 8 | 7 | ncelncsi 6122 | 
. . . 4
⊢  Nc V ∈ NC | 
| 9 |   | ltcpw1pwg 6203 | 
. . . . . . . . 9
⊢ (V ∈ V → Nc ℘1V <c Nc ℘V) | 
| 10 | 7, 9 | ax-mp 5 | 
. . . . . . . 8
⊢  Nc ℘1V
<c Nc ℘V | 
| 11 |   | df1c2 4169 | 
. . . . . . . . 9
⊢
1c = ℘1V | 
| 12 | 11 | nceqi 6110 | 
. . . . . . . 8
⊢  Nc 1c = Nc ℘1V | 
| 13 |   | pwv 3887 | 
. . . . . . . . . 10
⊢ ℘V = V | 
| 14 | 13 | nceqi 6110 | 
. . . . . . . . 9
⊢  Nc ℘V = Nc V | 
| 15 | 14 | eqcomi 2357 | 
. . . . . . . 8
⊢  Nc V = Nc ℘V | 
| 16 | 10, 12, 15 | 3brtr4i 4668 | 
. . . . . . 7
⊢  Nc 1c <c Nc V | 
| 17 |   | nchoicelem8 6297 | 
. . . . . . . 8
⊢ (( ≤c
We NC ∧ Nc V ∈ NC ) → (¬ (
Nc V ↑c
0c) ∈ NC ↔ Nc
1c <c Nc
V)) | 
| 18 | 8, 17 | mpan2 652 | 
. . . . . . 7
⊢ ( ≤c
We NC → (¬ (
Nc V ↑c
0c) ∈ NC ↔ Nc
1c <c Nc
V)) | 
| 19 | 16, 18 | mpbiri 224 | 
. . . . . 6
⊢ ( ≤c
We NC → ¬ (
Nc V ↑c
0c) ∈ NC ) | 
| 20 |   | nchoicelem3 6292 | 
. . . . . 6
⊢ (( Nc V ∈ NC ∧ ¬ ( Nc V ↑c 0c)
∈ NC ) → (
Spac ‘ Nc V) = { Nc
V}) | 
| 21 | 8, 19, 20 | sylancr 644 | 
. . . . 5
⊢ ( ≤c
We NC → ( Spac ‘ Nc
V) = { Nc V}) | 
| 22 |   | snfi 4432 | 
. . . . 5
⊢ { Nc V} ∈ Fin | 
| 23 | 21, 22 | syl6eqel 2441 | 
. . . 4
⊢ ( ≤c
We NC → ( Spac ‘ Nc
V) ∈ Fin
) | 
| 24 |   | fveq2 5329 | 
. . . . . 6
⊢ (x = Nc V → ( Spac ‘x) = ( Spac
‘ Nc V)) | 
| 25 | 24 | eleq1d 2419 | 
. . . . 5
⊢ (x = Nc V → ((
Spac ‘x) ∈ Fin ↔ ( Spac ‘ Nc
V) ∈ Fin
)) | 
| 26 | 25 | rspcev 2956 | 
. . . 4
⊢ (( Nc V ∈ NC ∧ ( Spac ‘ Nc
V) ∈ Fin )
→ ∃x ∈ NC ( Spac
‘x) ∈ Fin
) | 
| 27 | 8, 23, 26 | sylancr 644 | 
. . 3
⊢ ( ≤c
We NC → ∃x ∈ NC ( Spac ‘x) ∈ Fin ) | 
| 28 | 1, 3, 5, 6, 27 | weds 5939 | 
. 2
⊢ ( ≤c
We NC → ∃m ∈ NC (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) | 
| 29 |   | simpll 730 | 
. . . . . . 7
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) →
≤c We NC ) | 
| 30 |   | df-we 5907 | 
. . . . . . . . . . 11
⊢  We = ( Or ∩ Fr ) | 
| 31 | 30 | breqi 4646 | 
. . . . . . . . . 10
⊢ ( ≤c
We NC ↔
≤c ( Or ∩ Fr ) NC ) | 
| 32 |   | brin 4694 | 
. . . . . . . . . 10
⊢ ( ≤c
( Or ∩ Fr ) NC ↔ ( ≤c Or NC ∧ ≤c Fr
NC )) | 
| 33 | 31, 32 | bitri 240 | 
. . . . . . . . 9
⊢ ( ≤c
We NC ↔ (
≤c Or NC ∧ ≤c
Fr NC
)) | 
| 34 | 33 | simplbi 446 | 
. . . . . . . 8
⊢ ( ≤c
We NC →
≤c Or NC ) | 
| 35 |   | sopc 5935 | 
. . . . . . . . . 10
⊢ ( ≤c
Or NC ↔ (
≤c Po NC ∧ ≤c
Connex NC
)) | 
| 36 | 35 | simplbi 446 | 
. . . . . . . . 9
⊢ ( ≤c
Or NC →
≤c Po NC ) | 
| 37 |   | porta 5934 | 
. . . . . . . . . 10
⊢ ( ≤c
Po NC ↔ (
≤c Ref NC ∧ ≤c
Trans NC ∧ ≤c Antisym NC
)) | 
| 38 | 37 | simp3bi 972 | 
. . . . . . . . 9
⊢ ( ≤c
Po NC →
≤c Antisym NC ) | 
| 39 | 36, 38 | syl 15 | 
. . . . . . . 8
⊢ ( ≤c
Or NC →
≤c Antisym NC ) | 
| 40 | 34, 39 | syl 15 | 
. . . . . . 7
⊢ ( ≤c
We NC →
≤c Antisym NC ) | 
| 41 | 29, 40 | syl 15 | 
. . . . . 6
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) →
≤c Antisym NC ) | 
| 42 |   | simplr 731 | 
. . . . . . 7
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → m ∈ NC ) | 
| 43 |   | tccl 6161 | 
. . . . . . 7
⊢ (m ∈ NC → Tc
m ∈ NC ) | 
| 44 | 42, 43 | syl 15 | 
. . . . . 6
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → Tc m
∈ NC
) | 
| 45 |   | simprr 733 | 
. . . . . . . 8
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n)) | 
| 46 |   | simprl 732 | 
. . . . . . . . . 10
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → ( Spac ‘m) ∈ Fin ) | 
| 47 |   | nchoicelem17 6306 | 
. . . . . . . . . 10
⊢ (( ≤c
We NC ∧ m ∈ NC ∧ ( Spac
‘m) ∈ Fin ) → ((
Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))) | 
| 48 | 29, 42, 46, 47 | syl3anc 1182 | 
. . . . . . . . 9
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))) | 
| 49 | 48 | simpld 445 | 
. . . . . . . 8
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → ( Spac ‘ Tc m)
∈ Fin
) | 
| 50 |   | fveq2 5329 | 
. . . . . . . . . . 11
⊢ (n = Tc
m → ( Spac ‘n) = ( Spac
‘ Tc m)) | 
| 51 | 50 | eleq1d 2419 | 
. . . . . . . . . 10
⊢ (n = Tc
m → (( Spac ‘n) ∈ Fin ↔ ( Spac ‘ Tc m)
∈ Fin
)) | 
| 52 |   | breq2 4644 | 
. . . . . . . . . 10
⊢ (n = Tc
m → (m ≤c n ↔ m
≤c Tc m)) | 
| 53 | 51, 52 | imbi12d 311 | 
. . . . . . . . 9
⊢ (n = Tc
m → ((( Spac ‘n) ∈ Fin → m
≤c n) ↔ (( Spac ‘ Tc m)
∈ Fin →
m ≤c Tc m))) | 
| 54 | 53 | rspcv 2952 | 
. . . . . . . 8
⊢ ( Tc m
∈ NC →
(∀n
∈ NC (( Spac ‘n) ∈ Fin → m
≤c n) → (( Spac ‘ Tc m)
∈ Fin →
m ≤c Tc m))) | 
| 55 | 44, 45, 49, 54 | syl3c 57 | 
. . . . . . 7
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → m ≤c Tc m) | 
| 56 |   | letc 6232 | 
. . . . . . . . . 10
⊢ ((m ∈ NC ∧ m ∈ NC ∧ m ≤c Tc m)
→ ∃p ∈ NC m = Tc p) | 
| 57 | 56 | 3expia 1153 | 
. . . . . . . . 9
⊢ ((m ∈ NC ∧ m ∈ NC ) → (m
≤c Tc m → ∃p ∈ NC m = Tc
p)) | 
| 58 | 42, 42, 57 | syl2anc 642 | 
. . . . . . . 8
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → (m ≤c Tc m
→ ∃p ∈ NC m = Tc p)) | 
| 59 |   | nchoicelem12 6301 | 
. . . . . . . . . . . . . . . 16
⊢ ((p ∈ NC ∧ ( Spac ‘ Tc p)
∈ Fin ) → (
Spac ‘p) ∈ Fin ) | 
| 60 | 59 | ad2ant2lr 728 | 
. . . . . . . . . . . . . . 15
⊢ (((
≤c We NC ∧ p ∈ NC ) ∧ (( Spac ‘ Tc p)
∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → Tc p
≤c n))) → ( Spac ‘p) ∈ Fin ) | 
| 61 |   | fveq2 5329 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (n = p → (
Spac ‘n) = ( Spac
‘p)) | 
| 62 | 61 | eleq1d 2419 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (n = p → ((
Spac ‘n) ∈ Fin ↔ ( Spac ‘p) ∈ Fin )) | 
| 63 |   | breq2 4644 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (n = p → (
Tc p ≤c n ↔ Tc
p ≤c p)) | 
| 64 | 62, 63 | imbi12d 311 | 
. . . . . . . . . . . . . . . . . 18
⊢ (n = p → (((
Spac ‘n) ∈ Fin → Tc
p ≤c n) ↔ (( Spac ‘p) ∈ Fin → Tc
p ≤c p))) | 
| 65 | 64 | rspcv 2952 | 
. . . . . . . . . . . . . . . . 17
⊢ (p ∈ NC → (∀n ∈ NC (( Spac
‘n) ∈ Fin → Tc p
≤c n) → (( Spac ‘p) ∈ Fin → Tc
p ≤c p))) | 
| 66 | 65 | imp 418 | 
. . . . . . . . . . . . . . . 16
⊢ ((p ∈ NC ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → Tc
p ≤c n)) → (( Spac ‘p) ∈ Fin → Tc
p ≤c p)) | 
| 67 | 66 | ad2ant2l 726 | 
. . . . . . . . . . . . . . 15
⊢ (((
≤c We NC ∧ p ∈ NC ) ∧ (( Spac ‘ Tc p)
∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → Tc p
≤c n))) → (( Spac ‘p) ∈ Fin → Tc
p ≤c p)) | 
| 68 | 60, 67 | mpd 14 | 
. . . . . . . . . . . . . 14
⊢ (((
≤c We NC ∧ p ∈ NC ) ∧ (( Spac ‘ Tc p)
∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → Tc p
≤c n))) → Tc p
≤c p) | 
| 69 |   | simplr 731 | 
. . . . . . . . . . . . . . . 16
⊢ (((
≤c We NC ∧ p ∈ NC ) ∧ (( Spac ‘ Tc p)
∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → Tc p
≤c n))) → p ∈ NC ) | 
| 70 |   | tccl 6161 | 
. . . . . . . . . . . . . . . 16
⊢ (p ∈ NC → Tc
p ∈ NC ) | 
| 71 | 69, 70 | syl 15 | 
. . . . . . . . . . . . . . 15
⊢ (((
≤c We NC ∧ p ∈ NC ) ∧ (( Spac ‘ Tc p)
∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → Tc p
≤c n))) → Tc p
∈ NC
) | 
| 72 |   | tlecg 6231 | 
. . . . . . . . . . . . . . 15
⊢ (( Tc p
∈ NC ∧ p ∈ NC ) → ( Tc p
≤c p ↔ Tc Tc
p ≤c Tc p)) | 
| 73 | 71, 69, 72 | syl2anc 642 | 
. . . . . . . . . . . . . 14
⊢ (((
≤c We NC ∧ p ∈ NC ) ∧ (( Spac ‘ Tc p)
∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → Tc p
≤c n))) → ( Tc p
≤c p ↔ Tc Tc
p ≤c Tc p)) | 
| 74 | 68, 73 | mpbid 201 | 
. . . . . . . . . . . . 13
⊢ (((
≤c We NC ∧ p ∈ NC ) ∧ (( Spac ‘ Tc p)
∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → Tc p
≤c n))) → Tc Tc
p ≤c Tc p) | 
| 75 |   | fveq2 5329 | 
. . . . . . . . . . . . . . . . 17
⊢ (m = Tc
p → ( Spac ‘m) = ( Spac
‘ Tc p)) | 
| 76 | 75 | eleq1d 2419 | 
. . . . . . . . . . . . . . . 16
⊢ (m = Tc
p → (( Spac ‘m) ∈ Fin ↔ ( Spac ‘ Tc p)
∈ Fin
)) | 
| 77 |   | breq1 4643 | 
. . . . . . . . . . . . . . . . . 18
⊢ (m = Tc
p → (m ≤c n ↔ Tc
p ≤c n)) | 
| 78 | 77 | imbi2d 307 | 
. . . . . . . . . . . . . . . . 17
⊢ (m = Tc
p → ((( Spac ‘n) ∈ Fin → m
≤c n) ↔ (( Spac ‘n) ∈ Fin → Tc
p ≤c n))) | 
| 79 | 78 | ralbidv 2635 | 
. . . . . . . . . . . . . . . 16
⊢ (m = Tc
p → (∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n) ↔ ∀n ∈ NC (( Spac ‘n) ∈ Fin → Tc
p ≤c n))) | 
| 80 | 76, 79 | anbi12d 691 | 
. . . . . . . . . . . . . . 15
⊢ (m = Tc
p → ((( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n)) ↔ (( Spac ‘ Tc p)
∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → Tc p
≤c n)))) | 
| 81 | 80 | anbi2d 684 | 
. . . . . . . . . . . . . 14
⊢ (m = Tc
p → ((( ≤c We NC ∧ p ∈ NC ) ∧ (( Spac
‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → m ≤c n))) ↔ (( ≤c We NC ∧ p ∈ NC ) ∧ (( Spac
‘ Tc p) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → Tc
p ≤c n))))) | 
| 82 |   | tceq 6159 | 
. . . . . . . . . . . . . . 15
⊢ (m = Tc
p → Tc m =
Tc Tc p) | 
| 83 |   | id 19 | 
. . . . . . . . . . . . . . 15
⊢ (m = Tc
p → m = Tc
p) | 
| 84 | 82, 83 | breq12d 4653 | 
. . . . . . . . . . . . . 14
⊢ (m = Tc
p → ( Tc m
≤c m ↔ Tc Tc
p ≤c Tc p)) | 
| 85 | 81, 84 | imbi12d 311 | 
. . . . . . . . . . . . 13
⊢ (m = Tc
p → (((( ≤c We NC ∧ p ∈ NC ) ∧ (( Spac
‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → m ≤c n))) → Tc m
≤c m) ↔ (((
≤c We NC ∧ p ∈ NC ) ∧ (( Spac ‘ Tc p)
∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → Tc p
≤c n))) → Tc Tc
p ≤c Tc p))) | 
| 86 | 74, 85 | mpbiri 224 | 
. . . . . . . . . . . 12
⊢ (m = Tc
p → ((( ≤c We NC ∧ p ∈ NC ) ∧ (( Spac
‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → m ≤c n))) → Tc m
≤c m)) | 
| 87 | 86 | com12 27 | 
. . . . . . . . . . 11
⊢ (((
≤c We NC ∧ p ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → (m = Tc
p → Tc m
≤c m)) | 
| 88 | 87 | an32s 779 | 
. . . . . . . . . 10
⊢ (((
≤c We NC ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) ∧ p ∈ NC ) →
(m = Tc p
→ Tc m ≤c m)) | 
| 89 | 88 | rexlimdva 2739 | 
. . . . . . . . 9
⊢ (( ≤c
We NC ∧ (( Spac
‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac
‘n) ∈ Fin → m ≤c n))) → (∃p ∈ NC m = Tc
p → Tc m
≤c m)) | 
| 90 | 89 | adantlr 695 | 
. . . . . . . 8
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → (∃p ∈ NC m = Tc
p → Tc m
≤c m)) | 
| 91 | 58, 90 | syld 40 | 
. . . . . . 7
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → (m ≤c Tc m
→ Tc m ≤c m)) | 
| 92 | 55, 91 | mpd 14 | 
. . . . . 6
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → Tc m
≤c m) | 
| 93 | 41, 44, 42, 92, 55 | antid 5930 | 
. . . . 5
⊢ (((
≤c We NC ∧ m ∈ NC ) ∧ (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n))) → Tc m =
m) | 
| 94 | 93 | exp32 588 | 
. . . 4
⊢ (( ≤c
We NC ∧ m ∈ NC ) → (( Spac ‘m) ∈ Fin → (∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n) → Tc m =
m))) | 
| 95 | 94 | imdistand 673 | 
. . 3
⊢ (( ≤c
We NC ∧ m ∈ NC ) → (((
Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n)) → (( Spac ‘m) ∈ Fin ∧ Tc m =
m))) | 
| 96 | 95 | reximdva 2727 | 
. 2
⊢ ( ≤c
We NC → (∃m ∈ NC (( Spac ‘m) ∈ Fin ∧ ∀n ∈ NC (( Spac ‘n) ∈ Fin → m
≤c n)) → ∃m ∈ NC (( Spac ‘m) ∈ Fin ∧ Tc m =
m))) | 
| 97 | 28, 96 | mpd 14 | 
1
⊢ ( ≤c
We NC → ∃m ∈ NC (( Spac ‘m) ∈ Fin ∧ Tc m =
m)) |