NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nchoicelem19 GIF version

Theorem nchoicelem19 6308
Description: Lemma for nchoice 6309. Assuming well-ordering, there is a cardinal with a finite special set that is its own T-raising. Theorem 7.3 of [Specker] p. 974. (Contributed by SF, 20-Mar-2015.)
Assertion
Ref Expression
nchoicelem19 ( ≤c We NCm NC (( Spacm) Fin Tc m = m))

Proof of Theorem nchoicelem19
Dummy variables n x p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nchoicelem18 6307 . . 3 {x ( Spacx) Fin } V
2 fveq2 5329 . . . 4 (x = m → ( Spacx) = ( Spacm))
32eleq1d 2419 . . 3 (x = m → (( Spacx) Fin ↔ ( Spacm) Fin ))
4 fveq2 5329 . . . 4 (x = n → ( Spacx) = ( Spacn))
54eleq1d 2419 . . 3 (x = n → (( Spacx) Fin ↔ ( Spacn) Fin ))
6 id 19 . . 3 ( ≤c We NC → ≤c We NC )
7 vvex 4110 . . . . 5 V V
87ncelncsi 6122 . . . 4 Nc V NC
9 ltcpw1pwg 6203 . . . . . . . . 9 (V V → Nc 1V <c Nc V)
107, 9ax-mp 5 . . . . . . . 8 Nc 1V <c Nc V
11 df1c2 4169 . . . . . . . . 9 1c = 1V
1211nceqi 6110 . . . . . . . 8 Nc 1c = Nc 1V
13 pwv 3887 . . . . . . . . . 10 V = V
1413nceqi 6110 . . . . . . . . 9 Nc V = Nc V
1514eqcomi 2357 . . . . . . . 8 Nc V = Nc V
1610, 12, 153brtr4i 4668 . . . . . . 7 Nc 1c <c Nc V
17 nchoicelem8 6297 . . . . . . . 8 (( ≤c We NC Nc V NC ) → (¬ ( Nc V ↑c 0c) NCNc 1c <c Nc V))
188, 17mpan2 652 . . . . . . 7 ( ≤c We NC → (¬ ( Nc V ↑c 0c) NCNc 1c <c Nc V))
1916, 18mpbiri 224 . . . . . 6 ( ≤c We NC → ¬ ( Nc V ↑c 0c) NC )
20 nchoicelem3 6292 . . . . . 6 (( Nc V NC ¬ ( Nc V ↑c 0c) NC ) → ( SpacNc V) = { Nc V})
218, 19, 20sylancr 644 . . . . 5 ( ≤c We NC → ( SpacNc V) = { Nc V})
22 snfi 4432 . . . . 5 { Nc V} Fin
2321, 22syl6eqel 2441 . . . 4 ( ≤c We NC → ( SpacNc V) Fin )
24 fveq2 5329 . . . . . 6 (x = Nc V → ( Spacx) = ( SpacNc V))
2524eleq1d 2419 . . . . 5 (x = Nc V → (( Spacx) Fin ↔ ( SpacNc V) Fin ))
2625rspcev 2956 . . . 4 (( Nc V NC ( SpacNc V) Fin ) → x NC ( Spacx) Fin )
278, 23, 26sylancr 644 . . 3 ( ≤c We NCx NC ( Spacx) Fin )
281, 3, 5, 6, 27weds 5939 . 2 ( ≤c We NCm NC (( Spacm) Fin n NC (( Spacn) Finmc n)))
29 simpll 730 . . . . . . 7 ((( ≤c We NC m NC ) (( Spacm) Fin n NC (( Spacn) Finmc n))) → ≤c We NC )
30 df-we 5907 . . . . . . . . . . 11 We = ( OrFr )
3130breqi 4646 . . . . . . . . . 10 ( ≤c We NC ↔ ≤c ( OrFr ) NC )
32 brin 4694 . . . . . . . . . 10 ( ≤c ( OrFr ) NC ↔ ( ≤c Or NC c Fr NC ))
3331, 32bitri 240 . . . . . . . . 9 ( ≤c We NC ↔ ( ≤c Or NC c Fr NC ))
3433simplbi 446 . . . . . . . 8 ( ≤c We NC → ≤c Or NC )
35 sopc 5935 . . . . . . . . . 10 ( ≤c Or NC ↔ ( ≤c Po NC c Connex NC ))
3635simplbi 446 . . . . . . . . 9 ( ≤c Or NC → ≤c Po NC )
37 porta 5934 . . . . . . . . . 10 ( ≤c Po NC ↔ ( ≤c Ref NC c Trans NC c Antisym NC ))
3837simp3bi 972 . . . . . . . . 9 ( ≤c Po NC → ≤c Antisym NC )
3936, 38syl 15 . . . . . . . 8 ( ≤c Or NC → ≤c Antisym NC )
4034, 39syl 15 . . . . . . 7 ( ≤c We NC → ≤c Antisym NC )
4129, 40syl 15 . . . . . 6 ((( ≤c We NC m NC ) (( Spacm) Fin n NC (( Spacn) Finmc n))) → ≤c Antisym NC )
42 simplr 731 . . . . . . 7 ((( ≤c We NC m NC ) (( Spacm) Fin n NC (( Spacn) Finmc n))) → m NC )
43 tccl 6161 . . . . . . 7 (m NCTc m NC )
4442, 43syl 15 . . . . . 6 ((( ≤c We NC m NC ) (( Spacm) Fin n NC (( Spacn) Finmc n))) → Tc m NC )
45 simprr 733 . . . . . . . 8 ((( ≤c We NC m NC ) (( Spacm) Fin n NC (( Spacn) Finmc n))) → n NC (( Spacn) Finmc n))
46 simprl 732 . . . . . . . . . 10 ((( ≤c We NC m NC ) (( Spacm) Fin n NC (( Spacn) Finmc n))) → ( Spacm) Fin )
47 nchoicelem17 6306 . . . . . . . . . 10 (( ≤c We NC m NC ( Spacm) Fin ) → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c))))
4829, 42, 46, 47syl3anc 1182 . . . . . . . . 9 ((( ≤c We NC m NC ) (( Spacm) Fin n NC (( Spacn) Finmc n))) → (( SpacTc m) Fin ( Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 1c) Nc ( SpacTc m) = ( Tc Nc ( Spacm) +c 2c))))
4948simpld 445 . . . . . . . 8 ((( ≤c We NC m NC ) (( Spacm) Fin n NC (( Spacn) Finmc n))) → ( SpacTc m) Fin )
50 fveq2 5329 . . . . . . . . . . 11 (n = Tc m → ( Spacn) = ( SpacTc m))
5150eleq1d 2419 . . . . . . . . . 10 (n = Tc m → (( Spacn) Fin ↔ ( SpacTc m) Fin ))
52 breq2 4644 . . . . . . . . . 10 (n = Tc m → (mc nmc Tc m))
5351, 52imbi12d 311 . . . . . . . . 9 (n = Tc m → ((( Spacn) Finmc n) ↔ (( SpacTc m) Finmc Tc m)))
5453rspcv 2952 . . . . . . . 8 ( Tc m NC → (n NC (( Spacn) Finmc n) → (( SpacTc m) Finmc Tc m)))
5544, 45, 49, 54syl3c 57 . . . . . . 7 ((( ≤c We NC m NC ) (( Spacm) Fin n NC (( Spacn) Finmc n))) → mc Tc m)
56 letc 6232 . . . . . . . . . 10 ((m NC m NC mc Tc m) → p NC m = Tc p)
57563expia 1153 . . . . . . . . 9 ((m NC m NC ) → (mc Tc mp NC m = Tc p))
5842, 42, 57syl2anc 642 . . . . . . . 8 ((( ≤c We NC m NC ) (( Spacm) Fin n NC (( Spacn) Finmc n))) → (mc Tc mp NC m = Tc p))
59 nchoicelem12 6301 . . . . . . . . . . . . . . . 16 ((p NC ( SpacTc p) Fin ) → ( Spacp) Fin )
6059ad2ant2lr 728 . . . . . . . . . . . . . . 15 ((( ≤c We NC p NC ) (( SpacTc p) Fin n NC (( Spacn) FinTc pc n))) → ( Spacp) Fin )
61 fveq2 5329 . . . . . . . . . . . . . . . . . . . 20 (n = p → ( Spacn) = ( Spacp))
6261eleq1d 2419 . . . . . . . . . . . . . . . . . . 19 (n = p → (( Spacn) Fin ↔ ( Spacp) Fin ))
63 breq2 4644 . . . . . . . . . . . . . . . . . . 19 (n = p → ( Tc pc nTc pc p))
6462, 63imbi12d 311 . . . . . . . . . . . . . . . . . 18 (n = p → ((( Spacn) FinTc pc n) ↔ (( Spacp) FinTc pc p)))
6564rspcv 2952 . . . . . . . . . . . . . . . . 17 (p NC → (n NC (( Spacn) FinTc pc n) → (( Spacp) FinTc pc p)))
6665imp 418 . . . . . . . . . . . . . . . 16 ((p NC n NC (( Spacn) FinTc pc n)) → (( Spacp) FinTc pc p))
6766ad2ant2l 726 . . . . . . . . . . . . . . 15 ((( ≤c We NC p NC ) (( SpacTc p) Fin n NC (( Spacn) FinTc pc n))) → (( Spacp) FinTc pc p))
6860, 67mpd 14 . . . . . . . . . . . . . 14 ((( ≤c We NC p NC ) (( SpacTc p) Fin n NC (( Spacn) FinTc pc n))) → Tc pc p)
69 simplr 731 . . . . . . . . . . . . . . . 16 ((( ≤c We NC p NC ) (( SpacTc p) Fin n NC (( Spacn) FinTc pc n))) → p NC )
70 tccl 6161 . . . . . . . . . . . . . . . 16 (p NCTc p NC )
7169, 70syl 15 . . . . . . . . . . . . . . 15 ((( ≤c We NC p NC ) (( SpacTc p) Fin n NC (( Spacn) FinTc pc n))) → Tc p NC )
72 tlecg 6231 . . . . . . . . . . . . . . 15 (( Tc p NC p NC ) → ( Tc pc pTc Tc pc Tc p))
7371, 69, 72syl2anc 642 . . . . . . . . . . . . . 14 ((( ≤c We NC p NC ) (( SpacTc p) Fin n NC (( Spacn) FinTc pc n))) → ( Tc pc pTc Tc pc Tc p))
7468, 73mpbid 201 . . . . . . . . . . . . 13 ((( ≤c We NC p NC ) (( SpacTc p) Fin n NC (( Spacn) FinTc pc n))) → Tc Tc pc Tc p)
75 fveq2 5329 . . . . . . . . . . . . . . . . 17 (m = Tc p → ( Spacm) = ( SpacTc p))
7675eleq1d 2419 . . . . . . . . . . . . . . . 16 (m = Tc p → (( Spacm) Fin ↔ ( SpacTc p) Fin ))
77 breq1 4643 . . . . . . . . . . . . . . . . . 18 (m = Tc p → (mc nTc pc n))
7877imbi2d 307 . . . . . . . . . . . . . . . . 17 (m = Tc p → ((( Spacn) Finmc n) ↔ (( Spacn) FinTc pc n)))
7978ralbidv 2635 . . . . . . . . . . . . . . . 16 (m = Tc p → (n NC (( Spacn) Finmc n) ↔ n NC (( Spacn) FinTc pc n)))
8076, 79anbi12d 691 . . . . . . . . . . . . . . 15 (m = Tc p → ((( Spacm) Fin n NC (( Spacn) Finmc n)) ↔ (( SpacTc p) Fin n NC (( Spacn) FinTc pc n))))
8180anbi2d 684 . . . . . . . . . . . . . 14 (m = Tc p → ((( ≤c We NC p NC ) (( Spacm) Fin n NC (( Spacn) Finmc n))) ↔ (( ≤c We NC p NC ) (( SpacTc p) Fin n NC (( Spacn) FinTc pc n)))))
82 tceq 6159 . . . . . . . . . . . . . . 15 (m = Tc pTc m = Tc Tc p)
83 id 19 . . . . . . . . . . . . . . 15 (m = Tc pm = Tc p)
8482, 83breq12d 4653 . . . . . . . . . . . . . 14 (m = Tc p → ( Tc mc mTc Tc pc Tc p))
8581, 84imbi12d 311 . . . . . . . . . . . . 13 (m = Tc p → (((( ≤c We NC p NC ) (( Spacm) Fin n NC (( Spacn) Finmc n))) → Tc mc m) ↔ ((( ≤c We NC p NC ) (( SpacTc p) Fin n NC (( Spacn) FinTc pc n))) → Tc Tc pc Tc p)))
8674, 85mpbiri 224 . . . . . . . . . . . 12 (m = Tc p → ((( ≤c We NC p NC ) (( Spacm) Fin n NC (( Spacn) Finmc n))) → Tc mc m))
8786com12 27 . . . . . . . . . . 11 ((( ≤c We NC p NC ) (( Spacm) Fin n NC (( Spacn) Finmc n))) → (m = Tc pTc mc m))
8887an32s 779 . . . . . . . . . 10 ((( ≤c We NC (( Spacm) Fin n NC (( Spacn) Finmc n))) p NC ) → (m = Tc pTc mc m))
8988rexlimdva 2739 . . . . . . . . 9 (( ≤c We NC (( Spacm) Fin n NC (( Spacn) Finmc n))) → (p NC m = Tc pTc mc m))
9089adantlr 695 . . . . . . . 8 ((( ≤c We NC m NC ) (( Spacm) Fin n NC (( Spacn) Finmc n))) → (p NC m = Tc pTc mc m))
9158, 90syld 40 . . . . . . 7 ((( ≤c We NC m NC ) (( Spacm) Fin n NC (( Spacn) Finmc n))) → (mc Tc mTc mc m))
9255, 91mpd 14 . . . . . 6 ((( ≤c We NC m NC ) (( Spacm) Fin n NC (( Spacn) Finmc n))) → Tc mc m)
9341, 44, 42, 92, 55antid 5930 . . . . 5 ((( ≤c We NC m NC ) (( Spacm) Fin n NC (( Spacn) Finmc n))) → Tc m = m)
9493exp32 588 . . . 4 (( ≤c We NC m NC ) → (( Spacm) Fin → (n NC (( Spacn) Finmc n) → Tc m = m)))
9594imdistand 673 . . 3 (( ≤c We NC m NC ) → ((( Spacm) Fin n NC (( Spacn) Finmc n)) → (( Spacm) Fin Tc m = m)))
9695reximdva 2727 . 2 ( ≤c We NC → (m NC (( Spacm) Fin n NC (( Spacn) Finmc n)) → m NC (( Spacm) Fin Tc m = m)))
9728, 96mpd 14 1 ( ≤c We NCm NC (( Spacm) Fin Tc m = m))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wo 357   wa 358   = wceq 1642   wcel 1710  wral 2615  wrex 2616  Vcvv 2860  cin 3209  cpw 3723  {csn 3738  1cc1c 4135  1cpw1 4136  0cc0c 4375   +c cplc 4376   Fin cfin 4377   class class class wbr 4640  cfv 4782  (class class class)co 5526   Trans ctrans 5889   Ref cref 5890   Antisym cantisym 5891   Po cpartial 5892   Connex cconnex 5893   Or cstrict 5894   Fr cfound 5895   We cwe 5896   NC cncs 6089  c clec 6090   <c cltc 6091   Nc cnc 6092   Tc ctc 6094  2cc2c 6095  c cce 6097   Spac cspac 6274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-meredith 1406  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-csb 3138  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-tp 3744  df-uni 3893  df-int 3928  df-iun 3972  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-fix 5741  df-cup 5743  df-disj 5745  df-addcfn 5747  df-compose 5749  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-pw1fn 5767  df-fullfun 5769  df-clos1 5874  df-trans 5900  df-ref 5901  df-antisym 5902  df-partial 5903  df-connex 5904  df-strict 5905  df-found 5906  df-we 5907  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-map 6002  df-en 6030  df-ncs 6099  df-lec 6100  df-ltc 6101  df-nc 6102  df-tc 6104  df-2c 6105  df-3c 6106  df-ce 6107  df-tcfn 6108  df-spac 6275
This theorem is referenced by:  nchoice  6309
  Copyright terms: Public domain W3C validator