NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ad2ant2lr GIF version

Theorem ad2ant2lr 728
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.)
Hypothesis
Ref Expression
ad2ant2.1 ((φ ψ) → χ)
Assertion
Ref Expression
ad2ant2lr (((θ φ) (ψ τ)) → χ)

Proof of Theorem ad2ant2lr
StepHypRef Expression
1 ad2ant2.1 . . 3 ((φ ψ) → χ)
21adantrr 697 . 2 ((φ (ψ τ)) → χ)
32adantll 694 1 (((θ φ) (ψ τ)) → χ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  caovmo  5645  nchoicelem19  6307
  Copyright terms: Public domain W3C validator