NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elxp2 GIF version

Theorem elxp2 4803
Description: Membership in a cross product. (Contributed by NM, 23-Feb-2004.)
Assertion
Ref Expression
elxp2 (A (B × C) ↔ x B y C A = x, y)
Distinct variable groups:   x,y,A   x,B,y   x,C,y

Proof of Theorem elxp2
StepHypRef Expression
1 df-rex 2621 . . . 4 (y C (x B A = x, y) ↔ y(y C (x B A = x, y)))
2 r19.42v 2766 . . . 4 (y C (x B A = x, y) ↔ (x B y C A = x, y))
3 an13 774 . . . . 5 ((y C (x B A = x, y)) ↔ (A = x, y (x B y C)))
43exbii 1582 . . . 4 (y(y C (x B A = x, y)) ↔ y(A = x, y (x B y C)))
51, 2, 43bitr3i 266 . . 3 ((x B y C A = x, y) ↔ y(A = x, y (x B y C)))
65exbii 1582 . 2 (x(x B y C A = x, y) ↔ xy(A = x, y (x B y C)))
7 df-rex 2621 . 2 (x B y C A = x, yx(x B y C A = x, y))
8 elxp 4802 . 2 (A (B × C) ↔ xy(A = x, y (x B y C)))
96, 7, 83bitr4ri 269 1 (A (B × C) ↔ x B y C A = x, y)
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  wrex 2616  cop 4562   × cxp 4771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-opab 4624  df-xp 4785
This theorem is referenced by:  xpiundi  4818  xpiundir  4819  dfxp2  5114  xpnedisj  5514  1st2nd2  5517  crossex  5851  xpassen  6058  addccan2nclem1  6264
  Copyright terms: Public domain W3C validator