New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elxp2 | GIF version |
Description: Membership in a cross product. (Contributed by NM, 23-Feb-2004.) |
Ref | Expression |
---|---|
elxp2 | ⊢ (A ∈ (B × C) ↔ ∃x ∈ B ∃y ∈ C A = 〈x, y〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2621 | . . . 4 ⊢ (∃y ∈ C (x ∈ B ∧ A = 〈x, y〉) ↔ ∃y(y ∈ C ∧ (x ∈ B ∧ A = 〈x, y〉))) | |
2 | r19.42v 2766 | . . . 4 ⊢ (∃y ∈ C (x ∈ B ∧ A = 〈x, y〉) ↔ (x ∈ B ∧ ∃y ∈ C A = 〈x, y〉)) | |
3 | an13 774 | . . . . 5 ⊢ ((y ∈ C ∧ (x ∈ B ∧ A = 〈x, y〉)) ↔ (A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C))) | |
4 | 3 | exbii 1582 | . . . 4 ⊢ (∃y(y ∈ C ∧ (x ∈ B ∧ A = 〈x, y〉)) ↔ ∃y(A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C))) |
5 | 1, 2, 4 | 3bitr3i 266 | . . 3 ⊢ ((x ∈ B ∧ ∃y ∈ C A = 〈x, y〉) ↔ ∃y(A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C))) |
6 | 5 | exbii 1582 | . 2 ⊢ (∃x(x ∈ B ∧ ∃y ∈ C A = 〈x, y〉) ↔ ∃x∃y(A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C))) |
7 | df-rex 2621 | . 2 ⊢ (∃x ∈ B ∃y ∈ C A = 〈x, y〉 ↔ ∃x(x ∈ B ∧ ∃y ∈ C A = 〈x, y〉)) | |
8 | elxp 4802 | . 2 ⊢ (A ∈ (B × C) ↔ ∃x∃y(A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C))) | |
9 | 6, 7, 8 | 3bitr4ri 269 | 1 ⊢ (A ∈ (B × C) ↔ ∃x ∈ B ∃y ∈ C A = 〈x, y〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 〈cop 4562 × cxp 4771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-opab 4624 df-xp 4785 |
This theorem is referenced by: xpiundi 4818 xpiundir 4819 dfxp2 5114 xpnedisj 5514 1st2nd2 5517 crossex 5851 xpassen 6058 addccan2nclem1 6264 |
Copyright terms: Public domain | W3C validator |