New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iunfopab | GIF version |
Description: Two ways to express a function as a class of ordered pairs. (The proof was shortened by Andrew Salmon, 17-Sep-2011.) (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Sep-2011.) (Contributed by set.mm contributors, 19-Dec-2008.) |
Ref | Expression |
---|---|
iunfopab.1 | ⊢ B ∈ V |
Ref | Expression |
---|---|
iunfopab | ⊢ ∪x ∈ A {〈x, B〉} = {〈x, y〉 ∣ (x ∈ A ∧ y = B)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2621 | . . . 4 ⊢ (∃x ∈ A z ∈ {〈x, B〉} ↔ ∃x(x ∈ A ∧ z ∈ {〈x, B〉})) | |
2 | vex 2863 | . . . . . . . 8 ⊢ z ∈ V | |
3 | 2 | elsnc 3757 | . . . . . . 7 ⊢ (z ∈ {〈x, B〉} ↔ z = 〈x, B〉) |
4 | 3 | anbi2i 675 | . . . . . 6 ⊢ ((x ∈ A ∧ z ∈ {〈x, B〉}) ↔ (x ∈ A ∧ z = 〈x, B〉)) |
5 | iunfopab.1 | . . . . . . 7 ⊢ B ∈ V | |
6 | opeq2 4580 | . . . . . . . . 9 ⊢ (y = B → 〈x, y〉 = 〈x, B〉) | |
7 | 6 | eqeq2d 2364 | . . . . . . . 8 ⊢ (y = B → (z = 〈x, y〉 ↔ z = 〈x, B〉)) |
8 | 7 | anbi2d 684 | . . . . . . 7 ⊢ (y = B → ((x ∈ A ∧ z = 〈x, y〉) ↔ (x ∈ A ∧ z = 〈x, B〉))) |
9 | 5, 8 | ceqsexv 2895 | . . . . . 6 ⊢ (∃y(y = B ∧ (x ∈ A ∧ z = 〈x, y〉)) ↔ (x ∈ A ∧ z = 〈x, B〉)) |
10 | an13 774 | . . . . . . 7 ⊢ ((y = B ∧ (x ∈ A ∧ z = 〈x, y〉)) ↔ (z = 〈x, y〉 ∧ (x ∈ A ∧ y = B))) | |
11 | 10 | exbii 1582 | . . . . . 6 ⊢ (∃y(y = B ∧ (x ∈ A ∧ z = 〈x, y〉)) ↔ ∃y(z = 〈x, y〉 ∧ (x ∈ A ∧ y = B))) |
12 | 4, 9, 11 | 3bitr2i 264 | . . . . 5 ⊢ ((x ∈ A ∧ z ∈ {〈x, B〉}) ↔ ∃y(z = 〈x, y〉 ∧ (x ∈ A ∧ y = B))) |
13 | 12 | exbii 1582 | . . . 4 ⊢ (∃x(x ∈ A ∧ z ∈ {〈x, B〉}) ↔ ∃x∃y(z = 〈x, y〉 ∧ (x ∈ A ∧ y = B))) |
14 | 1, 13 | bitri 240 | . . 3 ⊢ (∃x ∈ A z ∈ {〈x, B〉} ↔ ∃x∃y(z = 〈x, y〉 ∧ (x ∈ A ∧ y = B))) |
15 | 14 | abbii 2466 | . 2 ⊢ {z ∣ ∃x ∈ A z ∈ {〈x, B〉}} = {z ∣ ∃x∃y(z = 〈x, y〉 ∧ (x ∈ A ∧ y = B))} |
16 | df-iun 3972 | . 2 ⊢ ∪x ∈ A {〈x, B〉} = {z ∣ ∃x ∈ A z ∈ {〈x, B〉}} | |
17 | df-opab 4624 | . 2 ⊢ {〈x, y〉 ∣ (x ∈ A ∧ y = B)} = {z ∣ ∃x∃y(z = 〈x, y〉 ∧ (x ∈ A ∧ y = B))} | |
18 | 15, 16, 17 | 3eqtr4i 2383 | 1 ⊢ ∪x ∈ A {〈x, B〉} = {〈x, y〉 ∣ (x ∈ A ∧ y = B)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 ∃wrex 2616 Vcvv 2860 {csn 3738 ∪ciun 3970 〈cop 4562 {copab 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-iun 3972 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-opab 4624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |