New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3bitr2i | GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2i.1 | ⊢ (φ ↔ ψ) |
3bitr2i.2 | ⊢ (χ ↔ ψ) |
3bitr2i.3 | ⊢ (χ ↔ θ) |
Ref | Expression |
---|---|
3bitr2i | ⊢ (φ ↔ θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2i.1 | . . 3 ⊢ (φ ↔ ψ) | |
2 | 3bitr2i.2 | . . 3 ⊢ (χ ↔ ψ) | |
3 | 1, 2 | bitr4i 243 | . 2 ⊢ (φ ↔ χ) |
4 | 3bitr2i.3 | . 2 ⊢ (χ ↔ θ) | |
5 | 3, 4 | bitri 240 | 1 ⊢ (φ ↔ θ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: con2bi 318 an13 774 xorneg1 1311 2eu5 2288 exists1 2293 euxfr 3023 rmo4 3030 2reu5lem3 3044 rmo3 3134 difin 3493 difin0ss 3617 elp6 4264 eqtfinrelk 4487 nnpweqlem1 4523 setconslem1 4732 setconslem6 4737 rabxp 4815 eliunxp 4822 dmeq0 4923 imadisj 5016 eliniseg 5021 intirr 5030 resco 5086 funcnv3 5158 fncnv 5159 fun11 5160 fununi 5161 iunfopab 5205 abrexco 5464 fnov 5592 mpt2mptx 5709 brtxp 5784 composeex 5821 addcfnex 5825 brpprod 5840 crossex 5851 domfnex 5871 ranfnex 5872 clos1ex 5877 clos1induct 5881 refex 5912 antisymex 5913 connexex 5914 extex 5916 symex 5917 mapexi 6004 enmap2lem1 6064 lecex 6116 mucex 6134 ceexlem1 6174 nncdiv3lem1 6276 nncdiv3 6278 nchoicelem16 6305 fnfreclem1 6318 |
Copyright terms: Public domain | W3C validator |