New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ax467 | GIF version |
Description: Proof of a single axiom that can replace ax-4 2135, ax-6o 2137, and ax-7 1734 in a subsystem that includes these axioms plus ax-5o 2136 and ax-gen 1546 (and propositional calculus). See ax467to4 2170, ax467to6 2171, and ax467to7 2172 for the re-derivation of those axioms. This theorem extends the idea in Scott Fenton's ax46 2162. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax467 | ⊢ ((∀x∀y ¬ ∀x∀yφ → ∀xφ) → φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-4 2135 | . . 3 ⊢ (∀yφ → φ) | |
2 | ax6 2147 | . . . 4 ⊢ (¬ ∀yφ → ∀y ¬ ∀yφ) | |
3 | ax-6o 2137 | . . . . . 6 ⊢ (¬ ∀x ¬ ∀x∀yφ → ∀yφ) | |
4 | 3 | con1i 121 | . . . . 5 ⊢ (¬ ∀yφ → ∀x ¬ ∀x∀yφ) |
5 | 4 | alimi 1559 | . . . 4 ⊢ (∀y ¬ ∀yφ → ∀y∀x ¬ ∀x∀yφ) |
6 | ax-7 1734 | . . . 4 ⊢ (∀y∀x ¬ ∀x∀yφ → ∀x∀y ¬ ∀x∀yφ) | |
7 | 2, 5, 6 | 3syl 18 | . . 3 ⊢ (¬ ∀yφ → ∀x∀y ¬ ∀x∀yφ) |
8 | 1, 7 | nsyl4 134 | . 2 ⊢ (¬ ∀x∀y ¬ ∀x∀yφ → φ) |
9 | ax-4 2135 | . 2 ⊢ (∀xφ → φ) | |
10 | 8, 9 | ja 153 | 1 ⊢ ((∀x∀y ¬ ∀x∀yφ → ∀xφ) → φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-7 1734 ax-4 2135 ax-5o 2136 ax-6o 2137 |
This theorem is referenced by: ax467to4 2170 ax467to6 2171 ax467to7 2172 |
Copyright terms: Public domain | W3C validator |