Proof of Theorem ax12b
Step | Hyp | Ref
| Expression |
1 | | id 19 |
. . 3
⊢ ((¬ x = y →
(y = z
→ ∀x y = z)) → (¬ x = y →
(y = z
→ ∀x y = z))) |
2 | 1 | a1dd 42 |
. 2
⊢ ((¬ x = y →
(y = z
→ ∀x y = z)) → (¬ x = y →
(¬ x = z → (y =
z → ∀x y = z)))) |
3 | | equtrr 1683 |
. . . . . 6
⊢ (z = y →
(x = z
→ x = y)) |
4 | 3 | equcoms 1681 |
. . . . 5
⊢ (y = z →
(x = z
→ x = y)) |
5 | 4 | con3rr3 128 |
. . . 4
⊢ (¬ x = y →
(y = z
→ ¬ x = z)) |
6 | | id 19 |
. . . . . 6
⊢ ((¬ x = y →
(¬ x = z → (y =
z → ∀x y = z))) →
(¬ x = y → (¬ x = z →
(y = z
→ ∀x y = z)))) |
7 | 6 | com4l 78 |
. . . . 5
⊢ (¬ x = y →
(¬ x = z → (y =
z → ((¬ x = y →
(¬ x = z → (y =
z → ∀x y = z))) →
∀x
y = z)))) |
8 | 7 | com23 72 |
. . . 4
⊢ (¬ x = y →
(y = z
→ (¬ x = z → ((¬ x = y →
(¬ x = z → (y =
z → ∀x y = z))) →
∀x
y = z)))) |
9 | 5, 8 | mpdd 36 |
. . 3
⊢ (¬ x = y →
(y = z
→ ((¬ x = y → (¬ x = z →
(y = z
→ ∀x y = z))) → ∀x y = z))) |
10 | 9 | com3r 73 |
. 2
⊢ ((¬ x = y →
(¬ x = z → (y =
z → ∀x y = z))) →
(¬ x = y → (y =
z → ∀x y = z))) |
11 | 2, 10 | impbii 180 |
1
⊢ ((¬ x = y →
(y = z
→ ∀x y = z)) ↔ (¬ x = y →
(¬ x = z → (y =
z → ∀x y = z)))) |