Proof of Theorem ax12bOLD
Step | Hyp | Ref
| Expression |
1 | | bi2.04 350 |
. . . 4
⊢ ((¬ x = y →
(y = z
→ ∀x y = z)) ↔ (y =
z → (¬ x = y →
∀x
y = z))) |
2 | | equtrr 1683 |
. . . . . . . . 9
⊢ (z = y →
(x = z
→ x = y)) |
3 | 2 | equcoms 1681 |
. . . . . . . 8
⊢ (y = z →
(x = z
→ x = y)) |
4 | 3 | con3d 125 |
. . . . . . 7
⊢ (y = z →
(¬ x = y → ¬ x
= z)) |
5 | 4 | pm4.71d 615 |
. . . . . 6
⊢ (y = z →
(¬ x = y ↔ (¬ x = y ∧ ¬ x =
z))) |
6 | 5 | imbi1d 308 |
. . . . 5
⊢ (y = z →
((¬ x = y → ∀x y = z) ↔
((¬ x = y ∧ ¬ x = z) →
∀x
y = z))) |
7 | 6 | pm5.74i 236 |
. . . 4
⊢ ((y = z →
(¬ x = y → ∀x y = z)) ↔
(y = z
→ ((¬ x = y ∧ ¬ x = z) →
∀x
y = z))) |
8 | 1, 7 | bitri 240 |
. . 3
⊢ ((¬ x = y →
(y = z
→ ∀x y = z)) ↔ (y =
z → ((¬ x = y ∧ ¬ x =
z) → ∀x y = z))) |
9 | | bi2.04 350 |
. . 3
⊢ ((y = z →
((¬ x = y ∧ ¬ x = z) →
∀x
y = z))
↔ ((¬ x = y ∧ ¬ x = z) →
(y = z
→ ∀x y = z))) |
10 | 8, 9 | bitri 240 |
. 2
⊢ ((¬ x = y →
(y = z
→ ∀x y = z)) ↔ ((¬ x = y ∧ ¬ x =
z) → (y = z →
∀x
y = z))) |
11 | | impexp 433 |
. 2
⊢ (((¬ x = y ∧ ¬ x =
z) → (y = z →
∀x
y = z))
↔ (¬ x = y → (¬ x = z →
(y = z
→ ∀x y = z)))) |
12 | 10, 11 | bitri 240 |
1
⊢ ((¬ x = y →
(y = z
→ ∀x y = z)) ↔ (¬ x = y →
(¬ x = z → (y =
z → ∀x y = z)))) |