New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > com23 | GIF version |
Description: Commutation of antecedents. Swap 2nd and 3rd. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2012.) |
Ref | Expression |
---|---|
com3.1 | ⊢ (φ → (ψ → (χ → θ))) |
Ref | Expression |
---|---|
com23 | ⊢ (φ → (χ → (ψ → θ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com3.1 | . 2 ⊢ (φ → (ψ → (χ → θ))) | |
2 | pm2.27 35 | . 2 ⊢ (χ → ((χ → θ) → θ)) | |
3 | 1, 2 | syl9 66 | 1 ⊢ (φ → (χ → (ψ → θ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com3r 73 com13 74 pm2.04 76 pm2.86d 93 impancom 427 dedlem0b 919 3com23 1157 exp3acom23 1372 ax12b 1689 a16g 1945 cbv1h 1978 sbied 2036 sbequi 2059 ax11indn 2195 eqrdav 2352 ralrimdva 2705 ralrimdvva 2710 ceqsalt 2882 vtoclgft 2906 reu6 3026 sbciegft 3077 reuss2 3536 reupick 3540 nnsucelr 4429 nndisjeq 4430 ltfintri 4467 ssfin 4471 evenodddisj 4517 nnadjoin 4521 sfintfin 4533 tfinnn 4535 spfinsfincl 4540 funssres 5145 funcnvuni 5162 fv3 5342 tz6.12-1 5345 funfvima2 5461 isoini 5498 f1o2d 5728 fnpprod 5844 enpw1 6063 enprmaplem3 6079 nclenn 6250 nchoicelem6 6295 nchoicelem12 6301 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |