NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ax467to7 GIF version

Theorem ax467to7 2172
Description: Re-derivation of ax-7 1734 from ax467 2169. Note that ax-6o 2137 and ax-7 1734 are not used by the re-derivation. The use of alimi 1559 (which uses ax-4 2135) is allowed since we have already proved ax467to4 2170. (Contributed by NM, 19-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax467to7 (xyφyxφ)

Proof of Theorem ax467to7
StepHypRef Expression
1 ax467to6 2171 . . 3 y ¬ y ¬ xyφ → ¬ xyφ)
21con4i 122 . 2 (xyφy ¬ y ¬ xyφ)
3 pm2.21 100 . . . . . 6 xy ¬ xyφ → (xy ¬ xyφxφ))
4 ax467 2169 . . . . . 6 ((xy ¬ xyφxφ) → φ)
53, 4syl 15 . . . . 5 xy ¬ xyφφ)
65alimi 1559 . . . 4 (x ¬ xy ¬ xyφxφ)
7 ax467to6 2171 . . . 4 x ¬ xy ¬ xyφy ¬ xyφ)
86, 7nsyl4 134 . . 3 y ¬ xyφxφ)
98alimi 1559 . 2 (y ¬ y ¬ xyφyxφ)
102, 9syl 15 1 (xyφyxφ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-7 1734  ax-4 2135  ax-5o 2136  ax-6o 2137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator