NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  con4i GIF version

Theorem con4i 122
Description: Inference rule derived from Axiom ax-3 8. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 21-Jun-2013.)
Hypothesis
Ref Expression
con4i.1 φ → ¬ ψ)
Assertion
Ref Expression
con4i (ψφ)

Proof of Theorem con4i
StepHypRef Expression
1 notnot1 114 . 2 (ψ → ¬ ¬ ψ)
2 con4i.1 . 2 φ → ¬ ψ)
31, 2nsyl2 119 1 (ψφ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.21i  123  mt4  129  modal-b  1752  ax10lem2  1937  ax9from9o  2148  ax67to7  2168  ax467to7  2172  necon2ai  2562  ndmfvrcl  5351  oprssdm  5613  ndmovrcl  5617
  Copyright terms: Public domain W3C validator