| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > con4i | GIF version | ||
| Description: Inference rule derived from Axiom ax-3 8. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 21-Jun-2013.) |
| Ref | Expression |
|---|---|
| con4i.1 | ⊢ (¬ φ → ¬ ψ) |
| Ref | Expression |
|---|---|
| con4i | ⊢ (ψ → φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot1 114 | . 2 ⊢ (ψ → ¬ ¬ ψ) | |
| 2 | con4i.1 | . 2 ⊢ (¬ φ → ¬ ψ) | |
| 3 | 1, 2 | nsyl2 119 | 1 ⊢ (ψ → φ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.21i 123 mt4 129 modal-b 1752 ax10lem2 1937 ax9from9o 2148 ax67to7 2168 ax467to7 2172 necon2ai 2562 ndmfvrcl 5351 oprssdm 5613 ndmovrcl 5617 |
| Copyright terms: Public domain | W3C validator |