| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > axi11e | GIF version | ||
| Description: Axiom of Variable Substitution for Existence (intuitionistic logic axiom ax-i11e). This can be derived from ax-11 1746 in a classical context but a separate axiom is needed for intuitionistic predicate calculus. (Contributed by Jim Kingdon, 31-Dec-2017.) |
| Ref | Expression |
|---|---|
| axi11e | ⊢ (x = y → (∃x(x = y ∧ φ) → ∃yφ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-11 1746 | . . 3 ⊢ (x = y → (∀y ¬ φ → ∀x(x = y → ¬ φ))) | |
| 2 | alnex 1543 | . . 3 ⊢ (∀y ¬ φ ↔ ¬ ∃yφ) | |
| 3 | alinexa 1578 | . . 3 ⊢ (∀x(x = y → ¬ φ) ↔ ¬ ∃x(x = y ∧ φ)) | |
| 4 | 1, 2, 3 | 3imtr3g 260 | . 2 ⊢ (x = y → (¬ ∃yφ → ¬ ∃x(x = y ∧ φ))) |
| 5 | 4 | con4d 97 | 1 ⊢ (x = y → (∃x(x = y ∧ φ) → ∃yφ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |