NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  axi11e GIF version

Theorem axi11e 2332
Description: Axiom of Variable Substitution for Existence (intuitionistic logic axiom ax-i11e). This can be derived from ax-11 1746 in a classical context but a separate axiom is needed for intuitionistic predicate calculus. (Contributed by Jim Kingdon, 31-Dec-2017.)
Assertion
Ref Expression
axi11e (x = y → (x(x = y φ) → yφ))

Proof of Theorem axi11e
StepHypRef Expression
1 ax-11 1746 . . 3 (x = y → (y ¬ φx(x = y → ¬ φ)))
2 alnex 1543 . . 3 (y ¬ φ ↔ ¬ yφ)
3 alinexa 1578 . . 3 (x(x = y → ¬ φ) ↔ ¬ x(x = y φ))
41, 2, 33imtr3g 260 . 2 (x = y → (¬ yφ → ¬ x(x = y φ)))
54con4d 97 1 (x = y → (x(x = y φ) → yφ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator