New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssnelpss | GIF version |
Description: A subclass missing a member is a proper subclass. (Contributed by NM, 12-Jan-2002.) |
Ref | Expression |
---|---|
ssnelpss | ⊢ (A ⊆ B → ((C ∈ B ∧ ¬ C ∈ A) → A ⊊ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelneq2 2452 | . . 3 ⊢ ((C ∈ B ∧ ¬ C ∈ A) → ¬ B = A) | |
2 | eqcom 2355 | . . 3 ⊢ (B = A ↔ A = B) | |
3 | 1, 2 | sylnib 295 | . 2 ⊢ ((C ∈ B ∧ ¬ C ∈ A) → ¬ A = B) |
4 | dfpss2 3355 | . . 3 ⊢ (A ⊊ B ↔ (A ⊆ B ∧ ¬ A = B)) | |
5 | 4 | baibr 872 | . 2 ⊢ (A ⊆ B → (¬ A = B ↔ A ⊊ B)) |
6 | 3, 5 | syl5ib 210 | 1 ⊢ (A ⊆ B → ((C ∈ B ∧ ¬ C ∈ A) → A ⊊ B)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ⊆ wss 3258 ⊊ wpss 3259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 df-ne 2519 df-pss 3262 |
This theorem is referenced by: ssnelpssd 3615 |
Copyright terms: Public domain | W3C validator |