New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > baroco | GIF version |
Description: "Baroco", one of the syllogisms of Aristotelian logic. All φ is ψ, and some χ is not ψ, therefore some χ is not φ. (In Aristotelian notation, AOO-2: PaM and SoM therefore SoP.) For example, "All informative things are useful", "Some websites are not useful", therefore "Some websites are not informative." (Contributed by David A. Wheeler, 28-Aug-2016.) |
Ref | Expression |
---|---|
baroco.maj | ⊢ ∀x(φ → ψ) |
baroco.min | ⊢ ∃x(χ ∧ ¬ ψ) |
Ref | Expression |
---|---|
baroco | ⊢ ∃x(χ ∧ ¬ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baroco.min | . 2 ⊢ ∃x(χ ∧ ¬ ψ) | |
2 | baroco.maj | . . . . . 6 ⊢ ∀x(φ → ψ) | |
3 | 2 | spi 1753 | . . . . 5 ⊢ (φ → ψ) |
4 | 3 | con3i 127 | . . . 4 ⊢ (¬ ψ → ¬ φ) |
5 | 4 | anim2i 552 | . . 3 ⊢ ((χ ∧ ¬ ψ) → (χ ∧ ¬ φ)) |
6 | 5 | eximi 1576 | . 2 ⊢ (∃x(χ ∧ ¬ ψ) → ∃x(χ ∧ ¬ φ)) |
7 | 1, 6 | ax-mp 5 | 1 ⊢ ∃x(χ ∧ ¬ φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |