New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spi | GIF version |
Description: Inference rule reversing generalization. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
spi.1 | ⊢ ∀xφ |
Ref | Expression |
---|---|
spi | ⊢ φ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spi.1 | . 2 ⊢ ∀xφ | |
2 | sp 1747 | . 2 ⊢ (∀xφ → φ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ φ |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: darii 2303 barbari 2305 cesare 2307 camestres 2308 festino 2309 baroco 2310 cesaro 2311 camestros 2312 datisi 2313 disamis 2314 felapton 2317 darapti 2318 calemes 2319 dimatis 2320 fresison 2321 calemos 2322 fesapo 2323 bamalip 2324 |
Copyright terms: Public domain | W3C validator |