NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  biadan2 GIF version

Theorem biadan2 623
Description: Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.)
Hypotheses
Ref Expression
biadan2.1 (φψ)
biadan2.2 (ψ → (φχ))
Assertion
Ref Expression
biadan2 (φ ↔ (ψ χ))

Proof of Theorem biadan2
StepHypRef Expression
1 biadan2.1 . . 3 (φψ)
21pm4.71ri 614 . 2 (φ ↔ (ψ φ))
3 biadan2.2 . . 3 (ψ → (φχ))
43pm5.32i 618 . 2 ((ψ φ) ↔ (ψ χ))
52, 4bitri 240 1 (φ ↔ (ψ χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  elab4g  2990  eqpw1  4163  eqnc2  6130
  Copyright terms: Public domain W3C validator