New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > biadan2 | GIF version |
Description: Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) |
Ref | Expression |
---|---|
biadan2.1 | ⊢ (φ → ψ) |
biadan2.2 | ⊢ (ψ → (φ ↔ χ)) |
Ref | Expression |
---|---|
biadan2 | ⊢ (φ ↔ (ψ ∧ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biadan2.1 | . . 3 ⊢ (φ → ψ) | |
2 | 1 | pm4.71ri 614 | . 2 ⊢ (φ ↔ (ψ ∧ φ)) |
3 | biadan2.2 | . . 3 ⊢ (ψ → (φ ↔ χ)) | |
4 | 3 | pm5.32i 618 | . 2 ⊢ ((ψ ∧ φ) ↔ (ψ ∧ χ)) |
5 | 2, 4 | bitri 240 | 1 ⊢ (φ ↔ (ψ ∧ χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: elab4g 2990 eqpw1 4163 eqnc2 6130 |
Copyright terms: Public domain | W3C validator |