NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  bianabs GIF version

Theorem bianabs 850
Description: Absorb a hypothesis into the second member of a biconditional. (Contributed by FL, 15-Feb-2007.)
Hypothesis
Ref Expression
bianabs.1 (φ → (ψ ↔ (φ χ)))
Assertion
Ref Expression
bianabs (φ → (ψχ))

Proof of Theorem bianabs
StepHypRef Expression
1 bianabs.1 . 2 (φ → (ψ ↔ (φ χ)))
2 ibar 490 . 2 (φ → (χ ↔ (φ χ)))
31, 2bitr4d 247 1 (φ → (ψχ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  ceqsrexv  2973  opelopab2a  4703  ov  5596  ovg  5602
  Copyright terms: Public domain W3C validator