New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ceqsrexv | GIF version |
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
ceqsrexv.1 | ⊢ (x = A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
ceqsrexv | ⊢ (A ∈ B → (∃x ∈ B (x = A ∧ φ) ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2621 | . . 3 ⊢ (∃x ∈ B (x = A ∧ φ) ↔ ∃x(x ∈ B ∧ (x = A ∧ φ))) | |
2 | an12 772 | . . . 4 ⊢ ((x = A ∧ (x ∈ B ∧ φ)) ↔ (x ∈ B ∧ (x = A ∧ φ))) | |
3 | 2 | exbii 1582 | . . 3 ⊢ (∃x(x = A ∧ (x ∈ B ∧ φ)) ↔ ∃x(x ∈ B ∧ (x = A ∧ φ))) |
4 | 1, 3 | bitr4i 243 | . 2 ⊢ (∃x ∈ B (x = A ∧ φ) ↔ ∃x(x = A ∧ (x ∈ B ∧ φ))) |
5 | eleq1 2413 | . . . . 5 ⊢ (x = A → (x ∈ B ↔ A ∈ B)) | |
6 | ceqsrexv.1 | . . . . 5 ⊢ (x = A → (φ ↔ ψ)) | |
7 | 5, 6 | anbi12d 691 | . . . 4 ⊢ (x = A → ((x ∈ B ∧ φ) ↔ (A ∈ B ∧ ψ))) |
8 | 7 | ceqsexgv 2972 | . . 3 ⊢ (A ∈ B → (∃x(x = A ∧ (x ∈ B ∧ φ)) ↔ (A ∈ B ∧ ψ))) |
9 | 8 | bianabs 850 | . 2 ⊢ (A ∈ B → (∃x(x = A ∧ (x ∈ B ∧ φ)) ↔ ψ)) |
10 | 4, 9 | syl5bb 248 | 1 ⊢ (A ∈ B → (∃x ∈ B (x = A ∧ φ) ↔ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 |
This theorem is referenced by: ceqsrexbv 2974 ceqsrex2v 2975 fnasrn 5418 f1oiso 5500 |
Copyright terms: Public domain | W3C validator |