New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > oibabs | GIF version |
Description: Absorption of disjunction into equivalence. (Contributed by NM, 6-Aug-1995.) (Proof shortened by Wolf Lammen, 3-Nov-2013.) |
Ref | Expression |
---|---|
oibabs | ⊢ (((φ ∨ ψ) → (φ ↔ ψ)) ↔ (φ ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 476 | . . . 4 ⊢ (¬ (φ ∨ ψ) ↔ (¬ φ ∧ ¬ ψ)) | |
2 | pm5.21 831 | . . . 4 ⊢ ((¬ φ ∧ ¬ ψ) → (φ ↔ ψ)) | |
3 | 1, 2 | sylbi 187 | . . 3 ⊢ (¬ (φ ∨ ψ) → (φ ↔ ψ)) |
4 | id 19 | . . 3 ⊢ ((φ ↔ ψ) → (φ ↔ ψ)) | |
5 | 3, 4 | ja 153 | . 2 ⊢ (((φ ∨ ψ) → (φ ↔ ψ)) → (φ ↔ ψ)) |
6 | ax-1 6 | . 2 ⊢ ((φ ↔ ψ) → ((φ ∨ ψ) → (φ ↔ ψ))) | |
7 | 5, 6 | impbii 180 | 1 ⊢ (((φ ∨ ψ) → (φ ↔ ψ)) ↔ (φ ↔ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |