NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  bitr4d GIF version

Theorem bitr4d 247
Description: Deduction form of bitr4i 243. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
bitr4d.1 (φ → (ψχ))
bitr4d.2 (φ → (θχ))
Assertion
Ref Expression
bitr4d (φ → (ψθ))

Proof of Theorem bitr4d
StepHypRef Expression
1 bitr4d.1 . 2 (φ → (ψχ))
2 bitr4d.2 . . 3 (φ → (θχ))
32bicomd 192 . 2 (φ → (χθ))
41, 3bitrd 244 1 (φ → (ψθ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  3bitr2d  272  3bitr2rd  273  3bitr4d  276  3bitr4rd  277  bianabs  850  3anibar  1123  iota1  4354  lefinlteq  4464  funbrfv2b  5363  dffn5  5364  fnrnfv  5365  fniniseg  5372  dff13  5472  isoini  5498  caovord3  5632  ce0ncpw1  6186  cantcb  6336
  Copyright terms: Public domain W3C validator