New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm4.43 | GIF version |
Description: Theorem *4.43 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 26-Nov-2012.) |
Ref | Expression |
---|---|
pm4.43 | ⊢ (φ ↔ ((φ ∨ ψ) ∧ (φ ∨ ¬ ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.24 852 | . . 3 ⊢ ¬ (ψ ∧ ¬ ψ) | |
2 | 1 | biorfi 396 | . 2 ⊢ (φ ↔ (φ ∨ (ψ ∧ ¬ ψ))) |
3 | ordi 834 | . 2 ⊢ ((φ ∨ (ψ ∧ ¬ ψ)) ↔ ((φ ∨ ψ) ∧ (φ ∨ ¬ ψ))) | |
4 | 2, 3 | bitri 240 | 1 ⊢ (φ ↔ ((φ ∨ ψ) ∧ (φ ∨ ¬ ψ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |