NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm4.43 GIF version

Theorem pm4.43 893
Description: Theorem *4.43 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 26-Nov-2012.)
Assertion
Ref Expression
pm4.43 (φ ↔ ((φ ψ) (φ ¬ ψ)))

Proof of Theorem pm4.43
StepHypRef Expression
1 pm3.24 852 . . 3 ¬ (ψ ¬ ψ)
21biorfi 396 . 2 (φ ↔ (φ (ψ ¬ ψ)))
3 ordi 834 . 2 ((φ (ψ ¬ ψ)) ↔ ((φ ψ) (φ ¬ ψ)))
42, 3bitri 240 1 (φ ↔ ((φ ψ) (φ ¬ ψ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator