| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > pm4.43 | GIF version | ||
| Description: Theorem *4.43 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 26-Nov-2012.) | 
| Ref | Expression | 
|---|---|
| pm4.43 | ⊢ (φ ↔ ((φ ∨ ψ) ∧ (φ ∨ ¬ ψ))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm3.24 852 | . . 3 ⊢ ¬ (ψ ∧ ¬ ψ) | |
| 2 | 1 | biorfi 396 | . 2 ⊢ (φ ↔ (φ ∨ (ψ ∧ ¬ ψ))) | 
| 3 | ordi 834 | . 2 ⊢ ((φ ∨ (ψ ∧ ¬ ψ)) ↔ ((φ ∨ ψ) ∧ (φ ∨ ¬ ψ))) | |
| 4 | 2, 3 | bitri 240 | 1 ⊢ (φ ↔ ((φ ∨ ψ) ∧ (φ ∨ ¬ ψ))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 ∧ wa 358 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |