Proof of Theorem eueq2
Step | Hyp | Ref
| Expression |
1 | | notnot1 114 |
. . . 4
⊢ (φ → ¬ ¬ φ) |
2 | | eueq2.1 |
. . . . . 6
⊢ A ∈
V |
3 | 2 | eueq1 3010 |
. . . . 5
⊢ ∃!x x = A |
4 | | euanv 2265 |
. . . . . 6
⊢ (∃!x(φ ∧ x = A) ↔
(φ ∧
∃!x
x = A)) |
5 | 4 | biimpri 197 |
. . . . 5
⊢ ((φ ∧ ∃!x x = A) →
∃!x(φ ∧ x = A)) |
6 | 3, 5 | mpan2 652 |
. . . 4
⊢ (φ → ∃!x(φ ∧ x = A)) |
7 | | euorv 2232 |
. . . 4
⊢ ((¬ ¬ φ ∧ ∃!x(φ ∧ x = A)) →
∃!x(¬ φ
∨ (φ
∧ x =
A))) |
8 | 1, 6, 7 | syl2anc 642 |
. . 3
⊢ (φ → ∃!x(¬
φ ∨
(φ ∧
x = A))) |
9 | | orcom 376 |
. . . . 5
⊢ ((¬ φ ∨ (φ ∧ x = A)) ↔
((φ ∧
x = A)
∨ ¬ φ)) |
10 | 1 | bianfd 892 |
. . . . . 6
⊢ (φ → (¬ φ ↔ (¬ φ ∧ x = B))) |
11 | 10 | orbi2d 682 |
. . . . 5
⊢ (φ → (((φ ∧ x = A) ∨ ¬ φ)
↔ ((φ ∧ x = A) ∨ (¬ φ ∧ x = B)))) |
12 | 9, 11 | syl5bb 248 |
. . . 4
⊢ (φ → ((¬ φ ∨ (φ ∧ x = A)) ↔
((φ ∧
x = A)
∨ (¬ φ ∧ x = B)))) |
13 | 12 | eubidv 2212 |
. . 3
⊢ (φ → (∃!x(¬
φ ∨
(φ ∧
x = A))
↔ ∃!x((φ ∧ x = A) ∨ (¬ φ ∧ x = B)))) |
14 | 8, 13 | mpbid 201 |
. 2
⊢ (φ → ∃!x((φ ∧ x = A) ∨ (¬ φ
∧ x =
B))) |
15 | | eueq2.2 |
. . . . . 6
⊢ B ∈
V |
16 | 15 | eueq1 3010 |
. . . . 5
⊢ ∃!x x = B |
17 | | euanv 2265 |
. . . . . 6
⊢ (∃!x(¬
φ ∧
x = B)
↔ (¬ φ ∧ ∃!x x = B)) |
18 | 17 | biimpri 197 |
. . . . 5
⊢ ((¬ φ ∧ ∃!x x = B) →
∃!x(¬ φ
∧ x =
B)) |
19 | 16, 18 | mpan2 652 |
. . . 4
⊢ (¬ φ → ∃!x(¬
φ ∧
x = B)) |
20 | | euorv 2232 |
. . . 4
⊢ ((¬ φ ∧ ∃!x(¬
φ ∧
x = B))
→ ∃!x(φ ∨ (¬ φ
∧ x =
B))) |
21 | 19, 20 | mpdan 649 |
. . 3
⊢ (¬ φ → ∃!x(φ ∨ (¬
φ ∧
x = B))) |
22 | | id 19 |
. . . . . 6
⊢ (¬ φ → ¬ φ) |
23 | 22 | bianfd 892 |
. . . . 5
⊢ (¬ φ → (φ ↔ (φ ∧ x = A))) |
24 | 23 | orbi1d 683 |
. . . 4
⊢ (¬ φ → ((φ ∨ (¬
φ ∧
x = B))
↔ ((φ ∧ x = A) ∨ (¬ φ ∧ x = B)))) |
25 | 24 | eubidv 2212 |
. . 3
⊢ (¬ φ → (∃!x(φ ∨ (¬
φ ∧
x = B))
↔ ∃!x((φ ∧ x = A) ∨ (¬ φ ∧ x = B)))) |
26 | 21, 25 | mpbid 201 |
. 2
⊢ (¬ φ → ∃!x((φ ∧ x = A) ∨ (¬ φ
∧ x =
B))) |
27 | 14, 26 | pm2.61i 156 |
1
⊢ ∃!x((φ ∧ x = A) ∨ (¬ φ
∧ x =
B)) |