NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eueq2 GIF version

Theorem eueq2 3011
Description: Equality has existential uniqueness (split into 2 cases). (Contributed by NM, 5-Apr-1995.)
Hypotheses
Ref Expression
eueq2.1 A V
eueq2.2 B V
Assertion
Ref Expression
eueq2 ∃!x((φ x = A) φ x = B))
Distinct variable groups:   φ,x   x,A   x,B

Proof of Theorem eueq2
StepHypRef Expression
1 notnot1 114 . . . 4 (φ → ¬ ¬ φ)
2 eueq2.1 . . . . . 6 A V
32eueq1 3010 . . . . 5 ∃!x x = A
4 euanv 2265 . . . . . 6 (∃!x(φ x = A) ↔ (φ ∃!x x = A))
54biimpri 197 . . . . 5 ((φ ∃!x x = A) → ∃!x(φ x = A))
63, 5mpan2 652 . . . 4 (φ∃!x(φ x = A))
7 euorv 2232 . . . 4 ((¬ ¬ φ ∃!x(φ x = A)) → ∃!xφ (φ x = A)))
81, 6, 7syl2anc 642 . . 3 (φ∃!xφ (φ x = A)))
9 orcom 376 . . . . 5 ((¬ φ (φ x = A)) ↔ ((φ x = A) ¬ φ))
101bianfd 892 . . . . . 6 (φ → (¬ φ ↔ (¬ φ x = B)))
1110orbi2d 682 . . . . 5 (φ → (((φ x = A) ¬ φ) ↔ ((φ x = A) φ x = B))))
129, 11syl5bb 248 . . . 4 (φ → ((¬ φ (φ x = A)) ↔ ((φ x = A) φ x = B))))
1312eubidv 2212 . . 3 (φ → (∃!xφ (φ x = A)) ↔ ∃!x((φ x = A) φ x = B))))
148, 13mpbid 201 . 2 (φ∃!x((φ x = A) φ x = B)))
15 eueq2.2 . . . . . 6 B V
1615eueq1 3010 . . . . 5 ∃!x x = B
17 euanv 2265 . . . . . 6 (∃!xφ x = B) ↔ (¬ φ ∃!x x = B))
1817biimpri 197 . . . . 5 ((¬ φ ∃!x x = B) → ∃!xφ x = B))
1916, 18mpan2 652 . . . 4 φ∃!xφ x = B))
20 euorv 2232 . . . 4 ((¬ φ ∃!xφ x = B)) → ∃!x(φ φ x = B)))
2119, 20mpdan 649 . . 3 φ∃!x(φ φ x = B)))
22 id 19 . . . . . 6 φ → ¬ φ)
2322bianfd 892 . . . . 5 φ → (φ ↔ (φ x = A)))
2423orbi1d 683 . . . 4 φ → ((φ φ x = B)) ↔ ((φ x = A) φ x = B))))
2524eubidv 2212 . . 3 φ → (∃!x(φ φ x = B)) ↔ ∃!x((φ x = A) φ x = B))))
2621, 25mpbid 201 . 2 φ∃!x((φ x = A) φ x = B)))
2714, 26pm2.61i 156 1 ∃!x((φ x = A) φ x = B))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   wo 357   wa 358   = wceq 1642   wcel 1710  ∃!weu 2204  Vcvv 2860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-v 2862
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator