Proof of Theorem eueq2
| Step | Hyp | Ref
| Expression |
| 1 | | notnot1 114 |
. . . 4
⊢ (φ → ¬ ¬ φ) |
| 2 | | eueq2.1 |
. . . . . 6
⊢ A ∈
V |
| 3 | 2 | eueq1 3010 |
. . . . 5
⊢ ∃!x x = A |
| 4 | | euanv 2265 |
. . . . . 6
⊢ (∃!x(φ ∧ x = A) ↔
(φ ∧
∃!x
x = A)) |
| 5 | 4 | biimpri 197 |
. . . . 5
⊢ ((φ ∧ ∃!x x = A) →
∃!x(φ ∧ x = A)) |
| 6 | 3, 5 | mpan2 652 |
. . . 4
⊢ (φ → ∃!x(φ ∧ x = A)) |
| 7 | | euorv 2232 |
. . . 4
⊢ ((¬ ¬ φ ∧ ∃!x(φ ∧ x = A)) →
∃!x(¬ φ
∨ (φ
∧ x =
A))) |
| 8 | 1, 6, 7 | syl2anc 642 |
. . 3
⊢ (φ → ∃!x(¬
φ ∨
(φ ∧
x = A))) |
| 9 | | orcom 376 |
. . . . 5
⊢ ((¬ φ ∨ (φ ∧ x = A)) ↔
((φ ∧
x = A)
∨ ¬ φ)) |
| 10 | 1 | bianfd 892 |
. . . . . 6
⊢ (φ → (¬ φ ↔ (¬ φ ∧ x = B))) |
| 11 | 10 | orbi2d 682 |
. . . . 5
⊢ (φ → (((φ ∧ x = A) ∨ ¬ φ)
↔ ((φ ∧ x = A) ∨ (¬ φ ∧ x = B)))) |
| 12 | 9, 11 | syl5bb 248 |
. . . 4
⊢ (φ → ((¬ φ ∨ (φ ∧ x = A)) ↔
((φ ∧
x = A)
∨ (¬ φ ∧ x = B)))) |
| 13 | 12 | eubidv 2212 |
. . 3
⊢ (φ → (∃!x(¬
φ ∨
(φ ∧
x = A))
↔ ∃!x((φ ∧ x = A) ∨ (¬ φ ∧ x = B)))) |
| 14 | 8, 13 | mpbid 201 |
. 2
⊢ (φ → ∃!x((φ ∧ x = A) ∨ (¬ φ
∧ x =
B))) |
| 15 | | eueq2.2 |
. . . . . 6
⊢ B ∈
V |
| 16 | 15 | eueq1 3010 |
. . . . 5
⊢ ∃!x x = B |
| 17 | | euanv 2265 |
. . . . . 6
⊢ (∃!x(¬
φ ∧
x = B)
↔ (¬ φ ∧ ∃!x x = B)) |
| 18 | 17 | biimpri 197 |
. . . . 5
⊢ ((¬ φ ∧ ∃!x x = B) →
∃!x(¬ φ
∧ x =
B)) |
| 19 | 16, 18 | mpan2 652 |
. . . 4
⊢ (¬ φ → ∃!x(¬
φ ∧
x = B)) |
| 20 | | euorv 2232 |
. . . 4
⊢ ((¬ φ ∧ ∃!x(¬
φ ∧
x = B))
→ ∃!x(φ ∨ (¬ φ
∧ x =
B))) |
| 21 | 19, 20 | mpdan 649 |
. . 3
⊢ (¬ φ → ∃!x(φ ∨ (¬
φ ∧
x = B))) |
| 22 | | id 19 |
. . . . . 6
⊢ (¬ φ → ¬ φ) |
| 23 | 22 | bianfd 892 |
. . . . 5
⊢ (¬ φ → (φ ↔ (φ ∧ x = A))) |
| 24 | 23 | orbi1d 683 |
. . . 4
⊢ (¬ φ → ((φ ∨ (¬
φ ∧
x = B))
↔ ((φ ∧ x = A) ∨ (¬ φ ∧ x = B)))) |
| 25 | 24 | eubidv 2212 |
. . 3
⊢ (¬ φ → (∃!x(φ ∨ (¬
φ ∧
x = B))
↔ ∃!x((φ ∧ x = A) ∨ (¬ φ ∧ x = B)))) |
| 26 | 21, 25 | mpbid 201 |
. 2
⊢ (¬ φ → ∃!x((φ ∧ x = A) ∨ (¬ φ
∧ x =
B))) |
| 27 | 14, 26 | pm2.61i 156 |
1
⊢ ∃!x((φ ∧ x = A) ∨ (¬ φ
∧ x =
B)) |