NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  bibi1i GIF version

Theorem bibi1i 305
Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
bibi.a (φψ)
Assertion
Ref Expression
bibi1i ((φχ) ↔ (ψχ))

Proof of Theorem bibi1i
StepHypRef Expression
1 bicom 191 . 2 ((φχ) ↔ (χφ))
2 bibi.a . . 3 (φψ)
32bibi2i 304 . 2 ((χφ) ↔ (χψ))
4 bicom 191 . 2 ((χψ) ↔ (ψχ))
51, 3, 43bitri 262 1 ((φχ) ↔ (ψχ))
Colors of variables: wff setvar class
Syntax hints:  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  bibi12i  306  biluk  899  xorass  1308  hadbi  1387  sbrbis  2073  ssequn1  3434  axssetprim  4093
  Copyright terms: Public domain W3C validator