| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > bibi1i | GIF version | ||
| Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bibi.a | ⊢ (φ ↔ ψ) |
| Ref | Expression |
|---|---|
| bibi1i | ⊢ ((φ ↔ χ) ↔ (ψ ↔ χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 191 | . 2 ⊢ ((φ ↔ χ) ↔ (χ ↔ φ)) | |
| 2 | bibi.a | . . 3 ⊢ (φ ↔ ψ) | |
| 3 | 2 | bibi2i 304 | . 2 ⊢ ((χ ↔ φ) ↔ (χ ↔ ψ)) |
| 4 | bicom 191 | . 2 ⊢ ((χ ↔ ψ) ↔ (ψ ↔ χ)) | |
| 5 | 1, 3, 4 | 3bitri 262 | 1 ⊢ ((φ ↔ χ) ↔ (ψ ↔ χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 |
| This theorem is referenced by: bibi12i 306 biluk 899 xorass 1308 hadbi 1387 sbrbis 2073 ssequn1 3434 axssetprim 4093 |
| Copyright terms: Public domain | W3C validator |