NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  bitr2d GIF version

Theorem bitr2d 245
Description: Deduction form of bitr2i 241. (Contributed by NM, 9-Jun-2004.)
Hypotheses
Ref Expression
bitr2d.1 (φ → (ψχ))
bitr2d.2 (φ → (χθ))
Assertion
Ref Expression
bitr2d (φ → (θψ))

Proof of Theorem bitr2d
StepHypRef Expression
1 bitr2d.1 . . 3 (φ → (ψχ))
2 bitr2d.2 . . 3 (φ → (χθ))
31, 2bitrd 244 . 2 (φ → (ψθ))
43bicomd 192 1 (φ → (θψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  3bitrrd  271  3bitr2rd  273  pm5.18  345  fnasrn  5418
  Copyright terms: Public domain W3C validator