New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > bitr2d | GIF version |
Description: Deduction form of bitr2i 241. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
bitr2d.1 | ⊢ (φ → (ψ ↔ χ)) |
bitr2d.2 | ⊢ (φ → (χ ↔ θ)) |
Ref | Expression |
---|---|
bitr2d | ⊢ (φ → (θ ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2d.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | bitr2d.2 | . . 3 ⊢ (φ → (χ ↔ θ)) | |
3 | 1, 2 | bitrd 244 | . 2 ⊢ (φ → (ψ ↔ θ)) |
4 | 3 | bicomd 192 | 1 ⊢ (φ → (θ ↔ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 3bitrrd 271 3bitr2rd 273 pm5.18 345 fnasrn 5418 |
Copyright terms: Public domain | W3C validator |